Advertisement

Physics and Chemistry of Minerals

, Volume 44, Issue 5, pp 345–351 | Cite as

Potassium self-diffusion in a K-rich single-crystal alkali feldspar

  • Fabian Hergemöller
  • Matthias Wegner
  • Manfred Deicher
  • Herbert Wolf
  • Florian Brenner
  • Herbert Hutter
  • Rainer Abart
  • Nicolaas A. Stolwijk
Original Paper

Abstract

The paper reports potassium diffusion measurements performed on gem-quality single-crystal alkali feldspar in the temperature range from 1169 to 1021 K. Natural sanidine from Volkesfeld, Germany was implanted with \({}^{43}{\hbox {K}}\) at the ISOLDE/CERN radioactive ion-beam facility normal to the \(\left( 001\right)\) crystallographic plane. Diffusion coefficients are well described by the Arrhenius equation with an activation energy of 2.4  eV and a pre-exponential factor of \(5 \times 10^{-6}\,{\hbox {m}}^2/{\hbox {s}}\), which is more than three orders of magnitude lower than the \({}^{22}{\hbox {Na}}\) diffusivity in the same feldspar and the same crystallographic direction. State-of-the-art considerations including ionic conductivity data on the same crystal and Monte Carlo simulations of diffusion in random binary alloy structures point to a correlated motion of K and Na through the interstitialcy mechanism.

Keywords

Alkali feldspar Potassium diffusion Interstitialcy mechanism Correlation factor Haven ratio 

Notes

Acknowledgements

We acknowledge the support provided by the Federal Ministry of Education and Research (BMBF) through Grants 05K13TSA and 05K16PGA for the use of implantation and diffusion equipment and infrastructure at ISOLDE/CERN. We are grateful to Karl Johnston and Juliana Schell for their help in performing \({}^{43}{\hbox {K}}\) implantations and to Marina Muñoz Castro for contributing surface profile measurements. This research was further supported by the Deutsche Forschungsgemeinschaft through the grant STO 210/16-1.

References

  1. Abart R, Petrishcheva E, Wirth R, Rhede D (2009) Exsolution by spinodal decomposition II: perthite formation during slow cooling of anatexites from Ngoronghoro, Tanzania. Am J Sci 309:450–475. doi: 10.2475/06.2009.02 CrossRefGoogle Scholar
  2. Behrens H, Johannes W, Schmalzried H (1990) On the mechanics of cation diffusion processes in ternary feldspars. Phys Chem Min 17:62–78. doi: 10.1007/BF00209227 CrossRefGoogle Scholar
  3. Cherniak D (2010) Cation diffusion in feldspars. Rev Min Geochem 72:691–733. doi: 10.2138/rmg.2010.72.15 CrossRefGoogle Scholar
  4. Demtröder K (2011) Untersuchung zur Al/Si-Ordnung an Sanidin Megakristallen aus der Eifel. Master’s thesis, Ruhr-Universität BochumGoogle Scholar
  5. Dyre JC, Murch G (1986) Correlation effects in tracer diffusion and ionic conductivity. II. Solid State Ion 21(2):139–142. doi: 10.1016/0167-2738(86)90204-3 CrossRefGoogle Scholar
  6. El Maanaoui H, Wilangowski F, Maheshwari A, Wiemhöfer HD, Abart R, Stolwijk NA (2016) Ionic conductivity in gem-quality single-crystal alkali feldspar from the Eifel: temperature, orientation and composition dependence. Phys Chem Min 43(5):327–340. doi: 10.1007/s00269-015-0797-y CrossRefGoogle Scholar
  7. Foland KA (1974) Alkali diffusion in orthoclase. Geochem Transp Kinet 634:77–98Google Scholar
  8. Freer R, Wright K, Kroll H, Göttlicher J (1997) Oxygen diffusion in sanidine feldspar and a critical appraisal of oxygen isotope-mass-effect measurements in non-cubic materials. Philos Mag A 75(2):485–503. doi: 10.1080/01418619708205154 CrossRefGoogle Scholar
  9. Hofmeister AM, Rossman GR (1984) Determination of Fe\(^{3+}\) and Fe\(^{2+}\) concentrations in feldspar by optical absorption and EPR spectroscopy. Phys Chem Min 11(5):213–224. doi: 10.1007/BF00308136 CrossRefGoogle Scholar
  10. Junod E (1974) Corrections of counting losses in gamma-spectrometry of short-lived radionuclides. J Radioanal Nucl Chem 20(1):113–134. doi: 10.1007/BF02515905 CrossRefGoogle Scholar
  11. Kasper R (1975) Cation and oxygen diffusion in albite. Dissertation, Brown University, Providence, Rhode IslandGoogle Scholar
  12. Kronenberg J (2012) Untersuchung der Uphill-Diffusion von Fremdatomen in Te-reichen Halbleitern. Dissertation, Saarland UniversityGoogle Scholar
  13. Lin T, Yund R (1972) Potassium and sodium self-diffusion in alkali feldspar. Contrib Min Petrol 34:177–184. doi: 10.1007/BF00373289 CrossRefGoogle Scholar
  14. Mehrer H (2007) Diffusion in solids. Springer, BerlinCrossRefGoogle Scholar
  15. Murch GE, Dyre JC (1989) Correlation effects in ionic conductivity. Crit Rev Solid State Mater Sci 14(4):345–365. doi: 10.1080/10408438908243739 CrossRefGoogle Scholar
  16. Petrishcheva E, Abart R, Schaeffer A, Habler G, Rhede D (2014) Sodium-potassium interdiffusion in potassium-rich alkali feldspar I: full diffusivity tensor at \(850\, {}^\circ\) C. Am J Sci 314:1284–1299. doi: 10.2475/09.2014.02 CrossRefGoogle Scholar
  17. Schaeffer AK, Petrishcheva E, Habler G, Abart R, Rhede D, Giester G (2014) Sodium-potassium interdiffusion in potassium-rich alkali feldspar II: composition- and temperature-dependence obtained from cation exchange experiments. Am J Sci 314:1300–1318. doi: 10.102475/09.2014.03 CrossRefGoogle Scholar
  18. Strohm A (2002) Selbstdiffusion in Silizium-Germanium-Legierungen. Dissertation, University of StuttgartGoogle Scholar
  19. Wilangowski F, Stolwijk NA (2015a) Monte Carlo simulation of diffusion and ionic conductivity in a simple cubic random alloy via the interstitialcy mechanism. J Phys Condens Matter 27(50):505401. doi: 10.1088/0953-8984/27/50/505401 CrossRefGoogle Scholar
  20. Wilangowski F, Stolwijk NA (2015b) Vacancy-related diffusion correlation effects in a simple cubic random alloy and on the Na–K sublattice of alkali feldspar. Philos Mag 95(21):2277–2293. doi: 10.1080/14786435.2015.1054918 CrossRefGoogle Scholar
  21. Wilangowski F, Stolwijk NA (2016) A Monte Carlo study of ionic transport in a simple cubic random alloy via the interstitialcy mechanism: Effects of non-collinear and direct interstitial jumps. Philos Mag. doi: 10.1080/14786435.2016.1235293 Google Scholar
  22. Wilangowski F, Divinski S, Abart R, Stolwijk NA (2015) Radiotracer experiments and Monte Carlo simulation of sodium diffusion in alkali feldspar: evidence against the vacancy mechanism. Defect Diffus Forum 363:79–84. doi: 10.4028/www.scientific.net/DDF.363.79 CrossRefGoogle Scholar
  23. Ziegler JF, Ziegler M, Biersack J (2010) SRIM - the stopping and range of ions in matter. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 268(1112):1818–1823. doi: 10.1016/j.nimb.2010.02.091 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Institut für MaterialphysikUniversity of MünsterMünsterGermany
  2. 2.Technische PhysikUniversität des SaarlandesSaarbrückenGermany
  3. 3.Institute for Chemical Technologies and AnalyticsVienna University of TechnologyViennaAustria
  4. 4.Department of Lithospheric ResearchUniversity of ViennaViennaAustria

Personalised recommendations