Physics and Chemistry of Minerals

, Volume 44, Issue 4, pp 247–262 | Cite as

Deformation history of Pinatubo peridotite xenoliths: constraints from microstructural observation and determination of olivine slip systems

  • Takafumi Yamamoto
  • Jun-ichi Ando
  • Naotaka Tomioka
  • Tetsuo Kobayashi
Original Paper

Abstract

The deformation history of the Pinatubo peridotite xenoliths was estimated on the basis of the microstructural observations and the determination of olivine slip systems. The latter was performed by using three methods: lattice-preferred orientation (LPO), crystallographic analysis of subgrain boundaries, and direct characterization of dislocations. The Pinatubo peridotites are composed of coarse olivine grains containing numerous fluid inclusions and some fine aggregates of orthopyroxene and amphibole grains, which implies intense fluid–rock interaction. The development of euhedral fine recrystallized olivine grains along the healed cracks within the coarse olivine grains suggests that the strain-free grains were nucleated and grew during static recovery. The LPO patterns and the analyses of subgrain boundaries indicate the activation of a [100]{0kl} slip system that developed under high temperature, low pressure, and dry deformation conditions. Although dislocations showing the [100]{0kl} slip system are dominantly observed, the other slip systems which could be formed by the deformation under moderate–high water content and lower-temperature conditions are also developed. The discrepancy between the results of dislocation characterization and the other two methods might have been caused by fulfilling the von Mises criterion or overprinting dislocation microstructures. Either way, the possible deformation history of the Pinatubo peridotites can be explained by the following scenario. The peridotites plastically moved from the back-arc to the fore-arc adjacent region, where CO2-rich saline fluid was trapped, by the corner flow of a mantle wedge. They were then annealed and metasomatized during entrapment of the upwelling magma.

Keywords

Deformation condition Lattice-preferred orientation Olivine Slip system Subgrain boundary Thickness fringe method 

Notes

Acknowledgements

The authors thank Y. Shibata and K. Das of Hiroshima University for EPMA measurement and assistance in improving this manuscript. We are grateful to M. Ito of JAMSTEC for his support in STEM analyses. M. H. T. Hannah of Philippine Institute of Volcanology and Seismology is also appreciated for collecting our samples. Constructive comments from T. Kawamoto and M. Yoshikawa of Kyoto University improved the quality of the paper. The critical comments of the two anonymous reviewers helped us to strengthen our arguments and revise this manuscript. This study was supported by a research Grant from the Japan Society for the Promotion of Science (No. JP23340162 to JA).

References

  1. Ando J, Fujino K, Takeshita T (1993) Dislocation microstructures in naturally deformed silicate garnets. Phys Earth Planet Inter 80:105–116. doi: 10.1016/0031-9201(93)90041-7 CrossRefGoogle Scholar
  2. Arai S, Kida M (2000) Origin of fine-grained peridotite xenoliths form Iraya volcano of Batan Island, Philippines: deserpentinization or metasomatism at the wedge mantle beneath an incipient arc? Isl Arc 9:458–471. doi: 10.1046/j.1440-1738.2000.00294.x CrossRefGoogle Scholar
  3. Arai S, Ishimaru S, Okrugin VM (2003) Metasomatized hazburgite xenoliths from Avacha volcano as fragments of mantle wedge of the Kamchatka arc: implication for the metasomatic agent. Isl Arc 12:233–246. doi: 10.1046/j.1440-1738.2003.00392.x CrossRefGoogle Scholar
  4. Arai S, Takada S, Michibayashi K, Kida M (2004) Petrology of peridotite xenoliths from Iraya volcano, Philippines, and its implication for dynamic mantle-wedge processes. J Petrol 45:369–389. doi: 10.1093/petrology/egg100 CrossRefGoogle Scholar
  5. Barnes JD, Selverstone J, Sharp ZD (2006) Chlorine isotope chemistry of serpentinites from Elba, Italy, as an indicator of fluid source and subsequent tectonic history. Geochem Geophys Geosyst 7:Q08015. doi: 10.1029/2006GC001296 CrossRefGoogle Scholar
  6. Bautista BC, Bautista MLP, Oike K, Wu FT, Punongbayan RS (2001) A new insight on the geometry of subducting slabs in Northern Luzon, Philippines. Tectonophysics 339:279–310. doi: 10.1016/S0040-1951(01)00120-2 CrossRefGoogle Scholar
  7. Boudier F, Baronnet A, Mainprice D (2010) Serpentine mineral replacements of natural olivine and their seismic implications: oceanic lizardite versus subduction-related antigorite. J Petrol 51:495–512. doi: 10.1093/petrology/egp049 CrossRefGoogle Scholar
  8. Briais A, Patriat P, Tapponnier P (1993) Updated interpretation of magnetic anomalies and seafloor spreading stages in the South China Sea: implications for the Tertiary tectonics of Southeast Asia. J Geophys Res 98:6299–6328. doi: 10.1029/92JB02280 CrossRefGoogle Scholar
  9. Bryant JA, Yogodzinski GM, Churikova TG (2007) Melt-mantle interactions beneath the Kamchatka arc: evidence from ultramafic xenoliths from Shiveluch volcano. Geochem Geophys Geosyst 8:Q04007. doi: 10.1029/2006GC001443 CrossRefGoogle Scholar
  10. Bystricky M (2000) High shear strain of olivine aggregates: rheological and seismic consequences. Science 290:1564–1567. doi: 10.1126/science.290.5496.1564 CrossRefGoogle Scholar
  11. Carter NL, Ave’Lallemant HG (1970) High temperature flow of dunite and peridotite. Geol Soc Am Bull 81:2181–2201. doi:10.1130/0016-7606(1970)81[2181:HTFODA]2.0.CO;2Google Scholar
  12. Defant MJ, Jacques D, Maury RC, Boer JD, Joron J-L (1989) Geochemistry and tectonic setting of the Luzon arc, Philippines. Geol Soc Am Bull 101:663–672. doi: 10.1130/0016-7606(1989)101<0663 CrossRefGoogle Scholar
  13. Demouchy S, Mussi A, Barou F, Tommasi A, Cordier P (2014) Viscoplasticity of polycrystalline olivine experimentally deformed at high pressure and 900 °C. Tectonophysics 623:123–135. doi: 10.1016/j.tecto.2014.03.022 CrossRefGoogle Scholar
  14. Evans B, Goetze C (1979) The temperature variation of hardness of olivine and its implications for polycrystalline yield stress. J Geophys Res 84:5505–5524. doi: 10.1029/JB084iB10p05505 CrossRefGoogle Scholar
  15. Faccenda M, Burlini L, Gerya TV, Mainprice D (2008) Fault-induced seismic anisotropy by hydration in subducting oceanic plates. Nature 455:1097–1100. doi: 10.1038/nature07376 CrossRefGoogle Scholar
  16. Fan J, Wu S, Spence G (2015) Tomographic evidence for a slab tear induced by fossil ridge subduction at Manila Trench, South China Sea. Int Geol Rev 57:998–1013. doi: 10.1080/00206814.2014.929054 CrossRefGoogle Scholar
  17. Gaboriaud RJ, Darot M, Gueguen Y, Woirgard J (1981) Dislocations in olivine indented at low temperatures. Phys Chem Miner 7:100–104. doi: 10.1007/BF00309460 CrossRefGoogle Scholar
  18. Galgana G, Hamburger M, McCaffrey R, Corpuz E, Chen Q (2007) Analysis of crustal deformation in Luzon, Philippines using geodetic observations and earthquake focal mechanisms. Tectonophysics 432:63–87. doi: 10.1016/j.tecto.2006.12.00 CrossRefGoogle Scholar
  19. Harigane Y, Mizukami T, Morishita T, Michibayashi K, Abe N, Hirano N (2011) Direct evidence for upper mantle structure in the NW Pacific Plate: microstructural analysis of a petit-spot peridotite xenolith. Earth Planet Sci Lett 302:194–202. doi: 10.1016/j.epsl.2010.12.011 CrossRefGoogle Scholar
  20. Holtzman BK, Kohlstedt DL, Zimmerman ME, Heidelbach F, Hiraga T, Hustoft J (2003) Melt segregation and strain partitioning: implications for seismic anisotropy and mantle flow. Science 301:1227–1230. doi: 10.1126/science.1087132 CrossRefGoogle Scholar
  21. Ionov DA (2010) Petrology of mantle wedge lithosphere: new data on supra-subduction zone peridotite xenoliths from the andesitic Avacha volcano, Kamchatka. J Petrol 51:327–361. doi: 10.1093/petrology/egp090 CrossRefGoogle Scholar
  22. Ishida H (1980) Theoretical considerations of extra equal-thickness fringes around a dislocation outcrop observed with an X-ray plane wave. J Appl Cryst 13:58–64. doi: 10.1107/S0021889880011508 CrossRefGoogle Scholar
  23. Ishimaru S, Arai S, Ishida Y, Shirasaka M, Okrugin VM (2007) Melting and multi-stage metasomatism in the mantle wedge beneath a frontal arc inferred from highly depleted peridotite xenoliths from the Avacha volcano, Southern Kamchatka. J Petrol 48:395–433. doi: 10.1093/petrology/egl065 CrossRefGoogle Scholar
  24. Jung H, Karato S (2001) Water-induced fabric transitions in olivine. Science 293:1460–1463. doi: 10.1126/science.1062235 CrossRefGoogle Scholar
  25. Jung H, Katayama I, Jiang Z, Hiraga T, Karato S (2006) Effect of water and stress on the lattice-preferred orientation of olivine. Tectonophysics 421:1–22. doi: 10.1016/j.tecto.2006.02.011 CrossRefGoogle Scholar
  26. Jung H, Mo W, Green HW (2009) Upper mantle seismic anisotropy resulting from pressure-induced slip transition in olivine. Nat Geosci 2:73–77. doi: 10.1038/ngeo389 CrossRefGoogle Scholar
  27. Kaczmarek M-A, Reddy SM (2013) Mantle deformation during rifting: constraints from quantitative microstructural analysis of olivine from the East African Rift (Marsabit, Kenya). Tectonophysics 608:1122–1137. doi: 10.1016/j.tecto.2013.06.034 CrossRefGoogle Scholar
  28. Karato S (2008) Deformation of earth materials: an introduction to the rheology of solid earth. Cambridge University Press, New YorkCrossRefGoogle Scholar
  29. Karato S, Jung H, Katayama I, Skemer P (2008) Geodynamic significance of seismic anisotropy of the upper mantle: new insights from laboratory studies. Annu Rev Earth Planet Sci 36:59–95. doi: 10.1146/annurev.earth.36.031207.124120 CrossRefGoogle Scholar
  30. Katayama I, Karato S (2006) Effect of temperature on the B- to C-type olivine fabric transition and implication for flow pattern in subduction zones. Phys Earth Planet Inter 157:33–45. doi: 10.1016/j.pepi.2006.03.005 CrossRefGoogle Scholar
  31. Katayama I, Jung H, Karato S (2004) New type of olivine fabric from deformation experiments at modest water content and low stress. Geology 32:1045–1048. doi: 10.1130/G20805.1 CrossRefGoogle Scholar
  32. Katayama I, Hirauchi K, Michibayashi K, Ando J (2009) Trench-parallel anisotropy produced by serpentine deformation in the hydrated mantle wedge. Nature 461:1114–1117. doi: 10.1038/nature08513 CrossRefGoogle Scholar
  33. Kawahara K, Tsurekawa S, Nakashima H (1996) Activated slip systems in β-silicon nitride during high temperature deformation (in Japanese with English abstract). J Japan Inst Metals 60:582–586Google Scholar
  34. Kawamoto T, Yoshikawa M, Kumagai Y, Mirabueno MHT, Okuno M, Kobayashi T (2013) Mantle wedge infiltrated with saline fluids from dehydration and decarbonation of subducting slab. Proc Natl Acad Sci USA 110:9663–9668. doi: 10.1073/pnas.1302040110 CrossRefGoogle Scholar
  35. Kendrick MA, Honda M, Pettke T, Scambelluri M, Phillips D, Giuliani A (2013) Subduction zone fluxes of halogens and noble gases in seafloor and forearc serpentinites. Earth Planet Sci Lett 365:86–96. doi: 10.1016/j.epsl.2013.01.006 CrossRefGoogle Scholar
  36. Kim D, Jung H (2015) Deformation microstructures of olivine and chlorite in chlorite peridotites from Almklovdalen in the Western Gneiss Region, southwest Norway, and implications for seismic anisotropy. Int Geol Rev 57:650–668. doi: 10.1080/00206814.2014.936054 CrossRefGoogle Scholar
  37. Kneller EA, van Keken PE (2007) Trench-parallel flow and seismic anisotropy in the Mariana and Andean subduction systems. Nature 450:1222–1225. doi: 10.1038/nature06429 CrossRefGoogle Scholar
  38. Kneller EA, van Keken PE (2008) Effect of three-dimensional slab geometry on deformation in the mantle wedge: implications for shear wave anisotropy. Geochem Geophys Geosyst 9:Q01003. doi: 10.1029/2007GC001677 CrossRefGoogle Scholar
  39. Ko B, Jung H (2015) Crystal preferred orientation of an amphibole experimentally deformed by simple shear. Nat Commun 6:6586. doi: 10.1038/ncomms7586 CrossRefGoogle Scholar
  40. Levin V, Droznin D, Park J, Gordeev E (2004) Detailed mapping of seismic anisotropy with local shear waves in southeastern Kamchatka. Geophys J Int 158:1009–1023. doi: 10.1111/j.1365-246X.2004.02352.x CrossRefGoogle Scholar
  41. Long MD, Silver PG (2008) The subduction zone flow field from seismic anisotropy: a global view. Science 319:315–318. doi: 10.1126/science.1150809 CrossRefGoogle Scholar
  42. Mainprice D, Tommasi A, Couvy H, Cordier P, Frost DJ (2005) Pressure sensitivity of olivine slip systems and seismic anisotropy of Earth’s upper mantle. Nature 433:731–733. doi: 10.1038/nature03266 CrossRefGoogle Scholar
  43. Matsumoto K, Toriumi M (1989) Mechanical states of the upper mantle under the island arc as inferred from the microstructures of peridotite nodules. In: Karato S, Toriumi M (eds) Rheology of Solids and of the Earth. Oxford Scientific Publications, New York, pp 374–392Google Scholar
  44. Michibayashi K, Abe N, Okamoto A, Satsukawa T, Michikura K (2006) Seismic anisotropy in the uppermost mantle, back-arc region of the northeast Japan arc: petrophysical analyses of Ichinomegata peridotite xenoliths. Geophys Res Lett 33:L10312. doi: 10.1029/2006GL025812 CrossRefGoogle Scholar
  45. Miyajima N, Walte N (2009) Burgers vector determination in deformed perovskite and post-perovskite of CaIrO3 using thickness fringes in weak-beam dark-field images. Ultramicroscopy 109:683–692. doi: 10.1016/j.ultramic.2009.01.010 CrossRefGoogle Scholar
  46. Mori J, Eberhart-Phillips D, Harlow DH (1996) Three-dimensional velocity structure at Mount Pinatubo: resolving magma bodies and earthquake hypocenters. In: Newhall CG, Punongbayan RS (eds) Fire and Mud: Eruptions and Lahars of Mount Pinatubo, Philippines. PHIVOLCS and Univ of Wash Press, Seattle, pp 371–382Google Scholar
  47. Nakajima J, Hasegawa A (2004) Shear-wave polarization anisotropy and subduction-induced flow in the mantle wedge of northeastern Japan. Earth Planet Sci Lett 225:365–377. doi: 10.1016/j.epsl.2004.06.011 CrossRefGoogle Scholar
  48. Ohuchi T, Kawazoe T, Nishihara Y, Nishiyama N, Irifune T (2011) High pressure and temperature fabric transitions in olivine and variations in upper mantle seismic anisotropy. Earth Planet Sci Lett 304:55–63. doi: 10.1016/j.epsl.2011.01.015 CrossRefGoogle Scholar
  49. Pallister JS, Hoblitt RP, Reyes AG (1992) A basalt trigger for the 1991 eruptions of Pinatubo volcano? Nature 356:426–428. doi: 10.1038/356426a0 CrossRefGoogle Scholar
  50. Pallister JS, Hoblitt RP, Meeker GP, Knight RJ, Siems DF (1996) Magma mixing at Mount Pinatubo: Petrographic and chemical evidence from the 1991 deposits. In: Newhall CG, Punongbayan RS (eds) Fire and Mud: Eruptions and Lahars of Mount Pinatubo, Philippines. PHIVOLCS and Univ of Wash Press, Seattle, pp 687–731Google Scholar
  51. Park M, Jung H, Kil Y (2014) Petrofabrics of olivine in a rift axis and rift shoulder and their implications for seismic anisotropy beneath the rio grande rift. Isl Arc 23:299–311. doi: 10.1111/iar.12089 CrossRefGoogle Scholar
  52. Payot BD, Jego S, Maury RC, Polve M, Gregoire M, Ceuleneer G, Tamayo RA Jr, Yumul GP Jr, Bellon H, Cotten J (2007) The oceanic substratum of Northern Luzon: evidence from xenoliths within Monglo adakite (the Philippines). Isl Arc 16:276–290. doi: 10.1111/j.1440-1738.2007.00574.x CrossRefGoogle Scholar
  53. Satsukawa T, Michibayashi K (2009) Determination of slip system in olivine based on crystallographic preferred orientation and subgrain- rotation axis: examples from Ichinomegata peridotite xenoliths, Oga peninsula, Akita prefecture (in Japanese with English abstract). J Geol Soc Jpn 115:288–291. doi: 10.5575/geosoc.115.288 CrossRefGoogle Scholar
  54. Satsukawa T, Michibayashi K (2014) Flow in the uppermost mantle during back-arc spreading revealed by Ichinomegata peridotite xenoliths, NE Japan. Lithos 189:89–104. doi: 10.1016/j.lithos.2013.10.035 CrossRefGoogle Scholar
  55. Satsukawa T, Michibayashi K, Anthony EY, Stern RJ, Gao SS, Liu KH (2011) Seismic anisotropy of the uppermost mantle beneath the Rio Grande rift: evidence from Kilbourne Hole peridotite xenoliths, New Mexico. Earth Planet Sci Lett 311:172–181. doi: 10.1016/j.epsl.2011.09.013 CrossRefGoogle Scholar
  56. Scambelluri M, Müntener O, Hermann J, Piccardo GB, Trommsdorff V (1995) Subduction of water into the mantle: history of an alpine peridotite. Geology 23:459–462. doi: 10.1130/0091-7613(1995)023<0459:SOWITM>2.3.CO;2 CrossRefGoogle Scholar
  57. Scambelluri M, Fiebig J, Malaspina N, Müntener O, Pettke T (2004) Serpentinite subduction: implications for fluid processes and trace-element recycling. Int Geol Rev 46:595–613. doi: 10.2747/0020-6814.46.7.595 CrossRefGoogle Scholar
  58. Soustelle V, Tommasi A (2010) Seismic properties of the supra-subduction mantle: constraints from peridotite xenoliths from the Avacha volcano, southern Kamchatka. Geophys Res Lett 37:L13307. doi: 10.1029/2010GL043450 CrossRefGoogle Scholar
  59. Tang Q, Zheng C (2013) Crust and upper mantle structure and its tectonic implications in the South China Sea and adjacent regions. J Asian Earth Sci 62:510–525. doi: 10.1016/j.jseaes.2012.10.037 CrossRefGoogle Scholar
  60. Texier M, Cordier P (2006) TEM characterization of dislocations and slip systems in stishovite deformed at 14 GPa, 1,300 °C in the multianvil apparatus. Phys Chem Miner 33:394–402. doi: 10.1007/s00269-006-0088-8 CrossRefGoogle Scholar
  61. van Keken PE (2003) The structure and dynamics of the mantle wedge. Earth Planet Sci Lett 215:323–338. doi: 10.1016/S0012-821X(03)00460-6 CrossRefGoogle Scholar
  62. Vauchez A, Dineur F, Rudnick R (2005) Microstructure, texture and seismic anisotropy of the lithospheric mantle above a mantle plume: insights from the Labait volcano xenoliths (Tanzania). Earth Planet Sci Lett 232:295–314. doi: 10.1016/j.epsl.2005.01.024 CrossRefGoogle Scholar
  63. Wada I, Wang K (2009) Common depth of slab-mantle decoupling: reconciling diversity and uniformity of subduction zones. Geochem Geophys Geosyst 10:Q10009. doi: 10.1029/2009GC002570 CrossRefGoogle Scholar
  64. Wada I, Wang K, He J, Hyndman RD (2008) Weakening of the subduction interface and its effects on surface heat flow, slab dehydration, and mantle wedge serpentinization. J Geophys Res Solid Earth 113:B04402. doi: 10.1029/2007JB005190 CrossRefGoogle Scholar
  65. Yoshikawa M, Tamura A, Arai S, Kawamoto T, Payot BD, Rivera DJ, Bariso EB, Mirabueno HT, Okuno M, Kobayashi T (2016) Aqueous fluids and sedimentary melts as agents for mantle wedge metasomatism, as inferred from peridotite xenoliths at Pinatubo and Iraya volcanoes, Luzon arc, Philippines. Lithos 262:355–368. doi: 10.1016/j.lithos.2016.07.008
  66. Yumul GP Jr, Dimalanta CB, Tamayo RA Jr, Bellon H (2003a) Silicic arc volcanism in Central Luzon, the Philippines: characterization of its space, time and geochemical relationship. Isl Arc 12:207–218. doi: 10.1046/j.1440-1738.2003.00393.x CrossRefGoogle Scholar
  67. Yumul GP Jr, Dimalanta CB, Tamayo RA Jr, Maury RC (2003b) Collision, subduction and accretion events in the Philippines: a synthesis. Isl Arc 12:77–91. doi: 10.1046/j.1440-1738.2003.00382.x CrossRefGoogle Scholar
  68. Zaffarana C, Tommasi A, Vauchez A, Grégoire M (2014) Microstructures and seismic properties of south Patagonian mantle xenoliths (Gobernador Gregores and Pali Aike). Tectonophysics 621:175–197. doi: 10.1016/j.tecto.2014.02.017 CrossRefGoogle Scholar
  69. Zhang S, Karato S (1995) Lattice preferred orientation of olivine aggregates deformed in simple shear. Nature 375:774–777. doi: 10.1038/375774a0 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Earth and Planetary Systems ScienceHiroshima UniversityHigashi-HiroshimaJapan
  2. 2.Kochi Institute for Core Sample ResearchJapan Agency for Marine-Earth Science and TechnologyNankokuJapan
  3. 3.Graduate School of Science and EngineeringKagoshima UniversityKagoshimaJapan

Personalised recommendations