Advertisement

Physics and Chemistry of Minerals

, Volume 44, Issue 4, pp 237–245 | Cite as

Garnets in the majorite–pyrope system: symmetry, lattice microstrain, and order–disorder of cations

  • Zhaodong Liu
  • Wei Du
  • Toru Shinmei
  • Steeve Gréaux
  • Chunyin Zhou
  • Takeshi Arimoto
  • Takehiro Kunimoto
  • Tetsuo Irifune
Original Paper

Abstract

We present a systematic experimental study on the phase transition, lattice microstrain, and order–disorder of cations for garnets in the majorite–pyrope system. Polycrystalline gem-quality garnets were synthesized at high pressure and high temperature using a Kawai-type multi-anvil apparatus. A phase transition from a cubic to tetragonal structure is clearly observed for garnets with the majorite content of more than 74 mol % through X-ray diffraction (XRD) and Raman scattering studies. Microstrain of garnets, evaluated with the Williamson–Hall plot on XRD profiles, shows a nonlinear dependence of the garnet compositions. The variation of the XRD peak broadening suggests the lattice microstrain of these garnets may be associated with the local structural heterogeneities due to the substitution of different cations via the coupled substitution (Mg2+ + Si4+ = 2Al3+) in the garnet structure. The width variation of Raman scattering peaks indicates that cation disorder occurs in the garnet structure for intermediate compositions. It is found that intermediate garnets and end-members have a minimum of microstrain, while those between end-members and intermediate compositions possess a larger microstrain.

Keywords

Garnet Phase transition Microstrain Cation disorder Cation substitution 

Notes

Acknowledgments

The authors thank J. B. Parise and Y. M. Zhou for their valuable suggestions for X-ray diffraction analysis. The authors thank T. Boffa Ballaran for her help in X-ray diffraction measurements. We thank both editor and two reviewers for their constructive comments. The present study is supported by the Grant-in-Aid for Scientific Research (S) by JSPS to T. Irifune (Grant No. 25220712).

Supplementary material

269_2016_852_MOESM1_ESM.docx (238 kb)
Supplementary material 1 (DOCX 238 kb)

References

  1. Akaogi M, Akimoto S (1977) Pyroxene-garnet solid solution equilibria in the systems Mg4Si4O12–Mg3Al2Si3O12 and at high pressures and temperatures. Phys Earth Planet Inter 15:90–106CrossRefGoogle Scholar
  2. Angel RJ, Finger LW, Hazen RM, Kanzaki M, Weidner DJ, Liebermann RC, Veblen DR (1989) Structure and twinning of single-crystal MgSiO3 garnet synthesized at 17 GPa and 1800 °C. Am Mineral 74:509–512Google Scholar
  3. Boffa Ballaran T, Carpenter MA (2003) Line broadening and enthalpy: some empirical calibrations of solid solution behaviour from IR spectra. Phase Transit 76:137–154CrossRefGoogle Scholar
  4. Boffa Ballaran T, Carpenter MA, Geiger CA, Koziol AM (1999) Local structural heterogeneity in garnet solid solutions. Phys Chem Miner 26:554–569CrossRefGoogle Scholar
  5. Bosenick A, Dove MT, Heine V, Geiger CA (2001) Scaling of thermodynamic mixing properties of garnet solid solutions. Phys Chem Miner 27:445–452Google Scholar
  6. Dapiaggi M, Geiger CA, Artioli G (2005) Microscopic strain in synthetic pyrope–grossular solid solutions determined by synchrotron X-ray powder diffraction at 5 K: the relationship to enthalpy of mixing behavior. Am Mineral 90:506–509CrossRefGoogle Scholar
  7. Du W, Clark SM, Walker D (2016) Excess mixing volume, microstrain, and stability of pyrope–grossular garnets. Am Mineral 101:193–204CrossRefGoogle Scholar
  8. Freeman CL, Allan NL, van Westrenen W (2006) Local cation environments in the pyrope–grossular Mg3Al2Si3O12–Ca3Al2Si3O12 garnet solid solution. Phys Rev B 74:13420301–13420309CrossRefGoogle Scholar
  9. Giesting PA, Hofmeister AM (2002) Thermal conductivity of disordered garnets from infrared spectroscopy. Phys Rev B 65:14430501–14430516CrossRefGoogle Scholar
  10. Giesting PA, Hofmeister AM, Wopenka B, Gwanmesia GD, Jolli BL (2004) Thermal conductivity and thermodynamics of majoritic garnets: implications for the transition zone. Earth Planet Sci Lett 218:45–46CrossRefGoogle Scholar
  11. Gwanmesia GD, Liu J, Chen G, Kesson S, Rigden SM, Liebermann RC (2000) Elasticity of pyrope (Mg3Al2Si3O12)–majorite (Mg4Si4O12) garnet solid solution. Phys Chem Miner 27:445–452CrossRefGoogle Scholar
  12. Heinemann S, Sharp TG, Seifert F, Rubie DC (1997) The cubic-tetragonal phase transition in the system majorite (Mg4Si4O12)–pyrope (Mg3Al2Si3O12) and garnet symmetry in the earth’s transition zone. Phys Chem Miner 24:206–221CrossRefGoogle Scholar
  13. Hofmeister AM, Giesting PA, Wopenka B, Gwanmesia GD, Jolliff BL (2004) Vibrational spectroscopy of pyrope–majorite garnets: structure implications. Am Mineral 89:132–146CrossRefGoogle Scholar
  14. Hunt SA, Dobson DP, Li L, Weidner DJ, Brodholt JP (2010) Relative strength of the pyrope–majorite solid solution and the flow-law of majorite containing garnets. Phys Earth Planet Inter 179:87–95CrossRefGoogle Scholar
  15. Irifune T, Ringwood AE (1987) Phase transformations in primitive MORB and pyrolite compositions to 25 GPa and some geophysical implications. In: Manghnani MH, Syono Y (eds) High pressure research in mineral phys-ics. Terra Scientific, TokyoGoogle Scholar
  16. Irifune T, Koizumi T, Ando J (1996) An experimental study of the garnet–perovskite transformation in the system MgSiO3–Mg3Al2Si3O12. Phys Earth Planet Inter 96:147–157CrossRefGoogle Scholar
  17. Kolesov BA, Geiger CA (1998) Raman spectra of silicate garnets. Phys Chem Miner 25:142–151CrossRefGoogle Scholar
  18. Langford JI, Wilson AJC (1978) Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J Appl Crystallogr 11:102–113CrossRefGoogle Scholar
  19. Li L, Weidner DJ, Brodholt J, Price GD (2007) The effect of cation-ordering on elastic properties of majorite: an ab initio study. Earth Planet Sci Lett 256:28–35CrossRefGoogle Scholar
  20. Liu ZD, Irifune T, Greax S, Arimoto T, Shinmei T, Higo Y (2015) Elastic wave velocity of polycrystalline Mj80Py20 garnet to 21 GPa and 2000 K. Phys Chem Miner 42:213–222CrossRefGoogle Scholar
  21. Liu ZD, Irifune T, Nishi M, Tange Y, Arimoto T, Shinmei T (2016) Phase relations in the system MgSiO3–Al2O3 up to 52 GPa and 2000 K. Phys Earth Planet Inter 257:18–27CrossRefGoogle Scholar
  22. McMillan P, Akaogi M, Ohtani E, Williams Q, Nieman R, Sato R (1989) Cation disorder in garnets along the Mg4Si4O12–Mg3Al2Si3O12 join: an infrared, Raman, and NMR study. Phys Chem Miner 16:428–435CrossRefGoogle Scholar
  23. Michel D, Collongues R, Jorba Y, Collongues R (1976) Study by Raman spectroscopy of order–disorder phenomena occurring in some binary oxides with fluorite-related structures. J Raman Spectrosc 5:163–180CrossRefGoogle Scholar
  24. Nakatsuka A, Yoshiasa A, Yamanaka T, Ohtaka O, Katsura T, Ito E (1999) Symmetry change of majorite solid-solution in the system Mg3Al2Si3O12–MgSiO3. Am Mineral 94:1135–1143CrossRefGoogle Scholar
  25. Novak GA, Gibbs GV (1971) The crystal chemistry of the silicate garnets. Am Mineral 56:791–825Google Scholar
  26. Parise JB, Wang Y, Gwanmesia GD, Zhang J, Sinelnikov Y, Chmielowski J, Weidner DJ, Liebermann RC (1996) The symmetry of garnets on the pyrope (Mg3Al2Si3O12)–majorite (MgSiO3) join. Geophys Res Lett 23:3799–3802CrossRefGoogle Scholar
  27. Phillips BL, Howell DA, Kirkpatrick RJ, Gasparik T (1992) Investigation of cation order in MgSiO3-rich garnet using 29Si and 27A1 MAS NMR spectroscopy. Am Mineral 77:704–712Google Scholar
  28. Rauch M, Keppler H, Häfner W, Poe B, Wokaun AA (1996) pressure-induced transition in MgSiO3-rich garnet revealed by Raman spectroscopy. Am Mineral 81:1289–1292Google Scholar
  29. Ringwood AE, Major A (1971) Synthesis of majorite and other high pressure garnets and perovskites. Earth Planet Sci Lett 12:411–418CrossRefGoogle Scholar
  30. Shannon RD (1976) Revised effective ionic radii. Acta Crystallogr A32:751–767CrossRefGoogle Scholar
  31. Sinogeikin SV, Bass JD, B OʼNeill, Gasparik T (1997) Elasticity of tetragonal end-member majorite and solid solution in the system Mg4Si4O12–Mg3Al2Si3O12. Phys Chem Miner 24:115–121CrossRefGoogle Scholar
  32. Wang Y, Gasparik T, Liebermann RC (1993) Modulated microstructure in synthetic majorite. Am Mineral 78:1165–1173Google Scholar
  33. Williamson GK, Hall WH (1953) X-ray broadening from filled aluminium and wolfram. Acta Metall 1:22–31CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Zhaodong Liu
    • 1
    • 2
  • Wei Du
    • 1
    • 3
    • 4
  • Toru Shinmei
    • 1
  • Steeve Gréaux
    • 1
    • 4
  • Chunyin Zhou
    • 1
  • Takeshi Arimoto
    • 1
  • Takehiro Kunimoto
    • 1
  • Tetsuo Irifune
    • 1
    • 4
  1. 1.Geodynamics Research CenterEhime UniversityMatsuyamaJapan
  2. 2.Bayerisches GeoinstitutUniversity of BayreuthBayreuthGermany
  3. 3.School of Earth and Space SciencePeking UniversityBeijingChina
  4. 4.Earth-Life Science InstituteTokyo Institute of TechnologyTokyoJapan

Personalised recommendations