Advertisement

Physics and Chemistry of Minerals

, Volume 44, Issue 2, pp 109–123 | Cite as

Spinel and post-spinel phase assemblages in Zn2TiO4: an experimental and theoretical study

  • Yanyao Zhang
  • Xi Liu
  • Sean R. Shieh
  • Xinjian Bao
  • Tianqi Xie
  • Fei Wang
  • Zhigang Zhang
  • Clemens Prescher
  • Vitali B. Prakapenka
Original Paper

Abstract

Zn2TiO4 spinel (Zn2TiO4-Sp) was synthesized by a solid-state reaction method (1573 K, room P and 72 h) and quasi-hydrostatically compressed to ~24 GPa using a DAC coupled with a synchrotron X-ray radiation (ambient T). We found that the Zn2TiO4-Sp was stable up to ~21 GPa and transformed to another phase at higher P. With some theoretical simulations, we revealed that this high-P phase adopted the CaTi2O4-type structure (Zn2TiO4-CT). Additionally, the isothermal bulk modulus (K T) of the Zn2TiO4-Sp was experimentally obtained as 156.0(44) GPa and theoretically obtained as 159.1(4) GPa, with its first pressure derivative \(K_{\text{T}}^{'}\) as 3.8(6) and 4.37(4), respectively. The volumetric and axial isothermal bulk moduli of the Zn2TiO4-CT were theoretically obtained as K T = 150(2) GPa (\(K_{\text{T}}^{'}\) = 5.4(2); for the volume), K T-a  = 173(2) GPa (\(K_{{\text{T-}}a}^{'}\) = 3.9(1); for the a-axis), K T-b  = 74(2) GPa (\(K_{{\text{T-}}b}^{'}\) = 7.0(2); for the b-axis), and K T-c  = 365(8) GPa (\(K_{{\text{T-}}c}^{'}\) = 1.5(4); for the c-axis), indicating a strong elastic anisotropy. The Zn2TiO4-CT was found as ~10.0 % denser than the Zn2TiO4-Sp at ambient conditions. The spinel and post-spinel phase assemblages for the Zn2TiO4 composition at high T have been deduced as Zn2TiO4-Sp, ZnTiO3-ilmenite + ZnO-wurtzite, ZnTiO3-ilmenite + ZnO-rock salt, ZnTiO3-perovskite + ZnO-rock salt, and Zn2TiO4-CT as P increases, which presumably implies a potential stability field for a CT-type Mg2SiO4 at very high P.

Keywords

Compressibility DFT calculations Diamond-anvil cell High-P phase transition Synchrotron X-ray diffraction Zn2TiO4-CT Zn2TiO4-Sp 

Notes

Acknowledgments

We thank two anonymous reviewers for their constructive comments on our manuscript, and Dr T Tsuchiya for processing our paper. The high-P work was performed at GeoSoilEnviroCARS (Sector 13), Advanced Photon Source (APS), Argonne National Laboratory. GeoSoilEnviroCARS is supported by the National Science Foundation-Earth Sciences (EAR-1128799) and Department of Energy-GeoSciences (DE-FG02-94ER14466). Use of the COMPRES-GSECARS gas loading system was supported by COMPRES under NSF Cooperative Agreement EAR 11-57758 and by GSECARS through NSF Grant EAR-1128799 and DOE Grant DE-FG02-94ER14466. This research used resources of the Advanced Photon Source, a US Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. This work is financially supported by the Natural Science Foundation of China (Grant No. 41440015 and 41273072), and by the Natural Sciences and Engineering Research Council of Canada.

References

  1. Akaogi M, Abe K, Yusa H, Kojitani H, Mori D, Inaguma Y (2015) High-pressure phase behaviors of ZnTiO3: ilmenite-perovskite transition, decomposition of perovskite into constituent oxides, and perovskite-lithium niobate transition. Phys Chem Minerals 42:421–429CrossRefGoogle Scholar
  2. Akimoto S, Syono Y (1967) High-pressure decomposition of some titanate spinels. J Chem Phys 47:1813–1817CrossRefGoogle Scholar
  3. Ali Z, Ali S, Ahmad I, Khan I, Aliabad HAR (2013) Structural and optoelectronic properties of the zinc titanate perovskite and spinel by modified Becke–Johnson potential. Phys B 420:54–57CrossRefGoogle Scholar
  4. Angel RJ (2000) Equation of state. In: Hazen RM, Downs RT (eds) High-temperature and high-pressure crystal chemistry. Reviews in mineralogy and geochemistry, vol 41. Mineralogical Society of America, Chantilly, pp 35–60Google Scholar
  5. Bartram SF, Slepetys RA (1961) Compound formation and crystal structure in the system ZnO–TiO2. J Am Ceram Soc 44:493–499CrossRefGoogle Scholar
  6. Bass JD, Liebermann RC, Weidner DJ, Finch SJ (1981) Elastic properties from acoustic and volume compression experiments. Phys Earth Planet Inter 25:140–158CrossRefGoogle Scholar
  7. Bates CH, White WB, Roy R (1962) New high-pressure polymorph of zinc oxide. Science 137:993CrossRefGoogle Scholar
  8. Bellaiche L, Vanderbilt D (2000) Virtual crystal approximation revisited: application to dielectric and piezoelectric properties of perovskites. Phys Rev B 61:7877–7882CrossRefGoogle Scholar
  9. Bertaut EF, Blum P (1956) Détermination de la structure de Ti2CaO4 par la Méthode Self-Consistante d’Approche Directe. Acta Crystallogr 9:121–126CrossRefGoogle Scholar
  10. Birch F (1947) Finite elastic strain of cubic crystals. Phys Rev 71:809–924CrossRefGoogle Scholar
  11. Borse PH, Cho CR, Lim KT, Hong TE, Jeong ED, Yoon JH, Yu SM, Kim HG (2012) Comparision of Zn2TiO4 and rutile TiO2 photocatalysts for H2 production under UV and near-visible light irradiation. J Ceram Process Res 13:42–46Google Scholar
  12. Chaves AC, Lima SJG, Araújo RCMU, Maurera MAMA, Longo E, Pizani PS, Simões LGP, Soledade LEB, Souza AG, Santos IMG (2006) Photoluminescence in disordered Zn2TiO4. J Solid State Chem 179:985–992CrossRefGoogle Scholar
  13. Chen Y (2012) Dielectric properties and crystal structure of Mg2TiO4 ceramics substituting Mg2+ with Zn2+ and Co2+. J Alloys Compd 513:481–486CrossRefGoogle Scholar
  14. Coppari F, Smith RF, Eggert JH, Wang J, Rygg JR, Lazicki A, Hawreliak JA, Collins GW, Duffy TS (2013) Experimental evidence for a phase transition in magnesium oxide at exoplanet pressures. Nat Geosci 6:926–929CrossRefGoogle Scholar
  15. de Gironcoli S, Giannozzi P, Baroni S (1991) Structure and thermodynamics of SixGe1−x alloys from ab initio Monte Carlo simulations. Phys Rev Lett 66:2116–2119CrossRefGoogle Scholar
  16. Decker BF, Kasper JS (1957) The structure of calcium ferrite. Acta Crystallogr 10:332–337CrossRefGoogle Scholar
  17. Delamoye P, Billet Y, Michel A (1970) Etude du phenomene ordre-desordre dans les solutions dolides de l’orthotitanate de zinc. Ann Chim 5:327–334Google Scholar
  18. Deng L, Liu X, Liu H, Zhang Y (2011) A first-principles study of the phase transition from Holl-I to Holl-II in the composition KAlSi3O8. Am Mineral 96:974–982CrossRefGoogle Scholar
  19. Dulin FH, Rase DE (1960) Phase equilibria in the system ZnO–TiO2. J Am Ceram Soc 43:125–131CrossRefGoogle Scholar
  20. Errandonea D, Kumar RS, Manjón FJ, Ursaki VV, Rusu EV (2009) Post-spinel transformations and equation of state in ZnGa2O4: determination at high pressure by in situ X-ray diffraction. Phys Rev B 79:024103CrossRefGoogle Scholar
  21. Fei Y (1999) Effects of temperature and composition on the bulk modulus of (Mg, Fe)O. Am Mineral 84:272–276CrossRefGoogle Scholar
  22. Fei Y, Frost DJ, Mao HK, Prewitt CT, Häusermann D (1999) In situ structure determination of the high-pressure phase of Fe3O4. Am Mineral 84:203–206CrossRefGoogle Scholar
  23. Finger LW, Hazen RM, Hofmeister AM (1986) High-pressure crystal chemistry of spinel (MgAl2O4) and magnetite (Fe3O4): comparisons with silicate spinels. Phys Chem Minerals 13:213–220CrossRefGoogle Scholar
  24. Fleet ME, Liu X, Shieh SR (2010) Structural change in lead fluorapatite at high pressure. Phys Chem Minerals 37:1–9CrossRefGoogle Scholar
  25. Frost DJ (2008) The upper mantle and transition zone. Elements 4:171–176CrossRefGoogle Scholar
  26. Giesber HG, Pennington WT, Kolis JW (2001) Redetermination of CaMn2O4. Acta Crystallogr 57:329–330CrossRefGoogle Scholar
  27. Gracia L, Beltrán A, Andrés J (2011) A theoretical study on the pressure-induced phase transitions in the inverse spinel structure Zn2SnO4. J Phys Chem C 115:7740–7746CrossRefGoogle Scholar
  28. Grigoryan RA, Grigoryan LA (2001) Phase composition of Zn2TiO4–Zn2ZrO4 materials prepared by low-temperature plasma synthesis and ceramic processing. Inorg Mater 37:1061–1063CrossRefGoogle Scholar
  29. Haavik C, Stølen S, Fjellvåg H, Hanfland M, Häusermann D (2000) Equation of state of mangetite and its high-pressure modification: thermodynamics of the Fe–O system at high pressure. Am Mineral 85:514–523CrossRefGoogle Scholar
  30. Hazen RM, Yang H (1999) Effects of cation substitution and order-disorder on P–V–T equations of state of cubic spinels. Am Mineral 84:1956–1960CrossRefGoogle Scholar
  31. He Q, Liu X, Hu X, Deng L, Chen Z, Li B, Fei Y (2012) Solid solutions between lead fluorapatite and lead fluorvanadate apatite: compressibility determined by using a diamond-anvil cell coupled with synchrotron X-ray diffraction. Phys Chem Minerals 39:219–226CrossRefGoogle Scholar
  32. Heinz DL, Jeanloz R (1984) The equation of state of the gold calibration standard. J Appl Phys 55:885–893CrossRefGoogle Scholar
  33. Hill RJ, Craig JR, Gibbs GV (1979) Systematics of the spinel structure type. Phys Chem Minerals 4:317–339CrossRefGoogle Scholar
  34. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:864–871CrossRefGoogle Scholar
  35. Holland TJB, Redfern SAT (1997) Unit cell refinement from powder diffraction data: the use of regression diagnostics. Mineral Mag 61:65–77CrossRefGoogle Scholar
  36. Irifune T, Ringwood AE (1987) Phase transformation in primitive MORB and pyrolite compositions to 25 GPa and some geophysical implications. In: Manghnani M, Syono Y (eds) High-pressure research in mineral physics. American Geophysical Union, Washington, pp 221–230Google Scholar
  37. Irifune T, Fujino K, Ohtani E (1991) A new high-pressure form of MgAl2O4. Nature 349:409–411CrossRefGoogle Scholar
  38. Ita J, Stixrude L (1992) Petrology, elasticity and composition of the mantle transition zone. J Geophys Res 97:6849–6866CrossRefGoogle Scholar
  39. Ito E (1977) The absence of oxide mixture in high-pressure phases of Mg-silicates. Geophys Res Lett 4:72–74CrossRefGoogle Scholar
  40. Ito E, Matsui Y (1979) High-pressure transformations in silicates, germinates and titanates with ABO3 stoichiometry. Phys Chem Minerals 4:265–273CrossRefGoogle Scholar
  41. Klotz S, Chervin JC, Munsch P, Le Marchand G (2009) Hydrostatic limits of 11 pressure transmitting media. J Phys D Appl Phys 42:075413CrossRefGoogle Scholar
  42. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:1133–1138CrossRefGoogle Scholar
  43. Komabayashi T, Hirose K, Sugimura E, Sata N, Ohishi Y, Dubrovinsky LS (2008) Simultaneous volume measurements of post-perovskite and perovskite in MgSiO3 and their thermal equations of state. Earth Planet Sci Lett 265:515–524CrossRefGoogle Scholar
  44. Kresse G, Hafner J (1994) Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements. J Phys Condens Matter 6:8245–8257CrossRefGoogle Scholar
  45. Kusaba K, Syono Y, Kikegawa T (1999) Phase transition of ZnO under high pressure and temperature. Proc Jpn Acad B Phys 75:1–6CrossRefGoogle Scholar
  46. Li B, Zhang J (2005) Pressure and temperature dependence of elastic wave velocity of MgSiO3 perovskite and the composition of the lower mantle. Phys Earth Planet Inter 151:143–154CrossRefGoogle Scholar
  47. Liu L (1976) The post-spinel phases of forsterite. Nature 262:770–772CrossRefGoogle Scholar
  48. Liu L (1978) A new high-pressure phase of spinel. Earth Planet Sci Lett 41:398–404CrossRefGoogle Scholar
  49. Liu X, Shieh SR, Fleet ME, Zhang L, He Q (2011) Equation of state of carbonated hydroxylapatite at ambient temperature up to 10 GPa: significance of carbonate. Am Mineral 96:74–80CrossRefGoogle Scholar
  50. Liu X, Xiong Z, Chang L, He Q, Wang F, Shieh SR, Wu C, Li B, Zhang L (2016) Anhydrous ringwoodites in the mantle transition zone: their bulk modulus, solid solution behavior, compositional variation, and sound velocity feature. Solid Earth Sci 1:28–47CrossRefGoogle Scholar
  51. Lv M, Liu X, Shieh SR, Xie T, Wang F, Prescher C, Prakapenka VB (2016) Equation of state of synthetic qandilite Mg2TiO4 at ambient temperature. Phys Chem Minerals 43:301–306CrossRefGoogle Scholar
  52. Manik SK, Bose P, Pradhan SK (2003) Microstructure characterization and phase transformation kinetics of ball-milled prepared nanocrystalline Zn2TiO4 by Rietveld method. Mater Chem Phys 82:837–847CrossRefGoogle Scholar
  53. Mao HK, Bell PM, Shaner JW, Steinberg DJ (1978) Specific volume measurements of Cu, Mo, Pt, and Au and calibration of ruby R1 fluorescence pressure gauge for 0.006 to 1 Mbar. J Appl Phys 49:3276–3283CrossRefGoogle Scholar
  54. McWilliams RS, Spaulding DK, Eggert JH, Celliers PM, Hicks DG, Smith RF, Collins GW, Jeanloz R (2012) Phase transformations and metallization of magnesium oxide at high pressure and temperature. Science 338:1330–1333CrossRefGoogle Scholar
  55. Millard RL, Peterson RC, Hunter BK (1995) Study of the cubic to tetragonal transition in Mg2TiO4 and Zn2TiO4 spinels by 17O MAS NMR and Rietveld refinement of X-ray diffraction data. Am Mineral 80:885–896CrossRefGoogle Scholar
  56. Miyajima N, Niwa K, Heidelbach F, Yagi T, Ohgushi K (2010) Deformation microtextures in CaIrO3 post-perovskite under high stress conditions using a laser-heated diamond anvil cell. J Phys Conf Ser 215:012097CrossRefGoogle Scholar
  57. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188–5192CrossRefGoogle Scholar
  58. Murakami M, Hirose K, Kawamura K, Sata N, Ohishi Y (2004) Post-perovskite phase transition in MgSiO3. Science 304:855–858CrossRefGoogle Scholar
  59. Nestola F, Smyth JR, Parisatto M, Secco L, Princivalle F, Bruno M, Prencipe M, Dal Negro A (2009) Effects of non-stoichiometry on the spinel structure at high pressure: implications for Earth’s mantle mineralogy. Geochim Cosmochim Acta 73:489–492CrossRefGoogle Scholar
  60. Nikolić MV, Obradović N, Paraskevopoulos KM, Zorba TT, Savić SM, Ristić MM (2008) Far infrared reflectance of sintered Zn2TiO4. J Mater Sci 43:5564–5568CrossRefGoogle Scholar
  61. Nordheim L (1931) Zur Elektronentheorie der Metalle I. Ann Phys Berlin 401:607–640CrossRefGoogle Scholar
  62. O’Neill HSC, Redfern SA, Kesson S, Short S (2003) An in situ neutron diffraction study of cation disordering in synthetic qandilite Mg2TiO4 at high temperatures. Am Mineral 88:860–865CrossRefGoogle Scholar
  63. Oganov AR, Ono S (2004) Theoretical and experimental evidence for a post-perovskite phase of MgSiO3 in Earth’s D” layer. Nature 430:445–448CrossRefGoogle Scholar
  64. Ono S, Kikegawa T, Ohishi Y (2006) The stability and compressibility of MgAl2O4 high-pressure polymorphs. Phys Chem Minerals 33:200–206CrossRefGoogle Scholar
  65. Payne MC, Teter MP, Allan DC, Arias TA, Joannopoulos JD (1992) Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev Mod Phys 64:1045–1097CrossRefGoogle Scholar
  66. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868CrossRefGoogle Scholar
  67. Prescher C, Prakapenka VB (2015) DIOPTAS: a program for reduction of two-dimensional X-ray diffraction data and data exploration. High Pressure Res 35:223–230CrossRefGoogle Scholar
  68. Ramer NJ, Rappe AM (2000) Virtual-crystal approximation that works: locating a compositional phase boundary in Pb(Zr1−xTix)O3. Phys Rev B 62:743–746CrossRefGoogle Scholar
  69. Rankin RB, Campos A, Tian H, Siriwardane R, Roy A, Spivey JJ, Sholl DS, Johnson JK (2008) Characterization of bulk structure in zinc orthotitanate: a density functional theory and EXAFS investigation. J Am Ceram Soc 91:584–590CrossRefGoogle Scholar
  70. Ricolleau A, Fei Y, Cottrell E, Watson H, Deng L, Zhang L, Fiquet G, Auzende A-L, Roskosz M, Morard G, Prakapenka V (2009) Density profile of pyrolite under the lower mantle conditions. Geophys Res Lett 36:L06302CrossRefGoogle Scholar
  71. Ringwood AE (1975) Composition and petrology of the earth’s mantle. McGraw-Hill, New YorkGoogle Scholar
  72. Ringwood AE, Major A (1966) Synthesis of Mg2SiO4–Fe2SiO4 spinel solid solutions. Earth Planet Sci Lett 1:241–245CrossRefGoogle Scholar
  73. Ringwood AE, Reid AF (1968) High pressure transformations of spinels (I). Earth Planet Sci Lett 5:245–250CrossRefGoogle Scholar
  74. Rodríguez-Hernández P, Muñoz A (2014) Chapter 4 Theoretical ab initio calculations in spinels at high pressures. In: Manjon FJ, Tiginyanu I, Ursaki V (eds) Pressure-induced phase transitions in AB2X4 chalcogenide compounds. Springer series in materials science, vol 189. Springer, New York, pp 103–109Google Scholar
  75. Santhaveesuk T, Wongratanaphisan D, Mangkorntong N, Choopun S (2008) Zn2TiO4 nanostructures prepared by thermal oxidation method. Adv Mater Res 55–57:641–644CrossRefGoogle Scholar
  76. Santos CL, Capistrano BJS, Vieira FTG, Santos MRC, Lima SJG, Longo E, Paskocimas CA, Souza AG, Soledade LEB, Santos IMG (2009) Structural and thermal characterization of Zn2−xCoxTiO4. J Therm Anal Calorim 97:137–141CrossRefGoogle Scholar
  77. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A 32:751–756CrossRefGoogle Scholar
  78. Shen X, Shen J, You SJ, Wang LX, Tang LY, Li YC, Liu J, Yang H, Zhu K, Liu YL, Zhou WY, Jin CQ, Yu RC, Xie SS (2009) Phase transition of Zn2SnO4 nanowires under high pressure. J Appl Phys 106:113523CrossRefGoogle Scholar
  79. Souza SC, Souza MAF, Lima SJG, Cassia-Santos MR, Fernandes VJ Jr, Soledade LEB, Longo E, Souza AG, Santos IMG (2005) The effects of Co, Ni and Mn on the thermal processing of Zn2TiO4 pigments. J Therm Anal Calorim 79:455–459CrossRefGoogle Scholar
  80. Soven P (1967) Coherent-potential model of substitutional disordered alloys. Phys Rev 156:809–813CrossRefGoogle Scholar
  81. Suito K (1972) Phase transitions of pure Mg2SiO4 into a spinel structure under high pressures and high temperatures. J Phys Earth 20:225–243CrossRefGoogle Scholar
  82. Swift D, Eggert J, Hicks D, Hamel S, Caspersen K, Schwegler E, Collins G, Nettelmann N, Ackland G (2012) Mass-radius relationships for exoplanets. Astrophys J 744:59CrossRefGoogle Scholar
  83. Tsuchiya T, Tsuchiya J (2011) Prediction of a hexagonal SiO2 phase affecting stabilities of MgSiO3 and CaSiO3 at multimegabar pressures. Proc Natl Acad Sci USA 108:1252–1255CrossRefGoogle Scholar
  84. Tsuchiya T, Tsuchiya J, Umenoto K, Wentzcovitch RM (2004) Phase transition in MgSiO3 perovskite in the Earth’s lower mantle. Earth Planet Sci Lett 224:241–248CrossRefGoogle Scholar
  85. Umemoto K, Wentzcovitch RM, Allen PB (2006) Dissociation of MgSiO3 in the cores of gas giants and terrestrial exoplanets. Science 311:983–986CrossRefGoogle Scholar
  86. Valencia D, O’Connell RJ, Sasselov D (2006) Internal structure of massive terrestrial planets. Icarus 181:545–554CrossRefGoogle Scholar
  87. Vanderbilt D (1990) Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys Rev B 41:7892–7895CrossRefGoogle Scholar
  88. Verwey EJW, Heilmann EL (1947) Physical properties and cation arrangement of oxides with spinel structures I. cation arrangement in spinels. J Chem Phys 15:174–180CrossRefGoogle Scholar
  89. Wagner FW, Tosi N, Sohl F, Rauer H, Spohn T (2012) Rocky super-Earth interiors. Structure and internal dynamics of CoRoT-7b and Kepler-10b. Astron Astrophys 541:A104CrossRefGoogle Scholar
  90. Wang Y, Weidner DJ, Liebermann RC, Zhao Y (1994) P-V-T equation of state of (Mg, Fe)SiO3 perovskite: constraints on composition of the lower mantle. Phys Earth Planet Inter 83:13–40CrossRefGoogle Scholar
  91. Wang Z, Saxena SK, Zha CS (2002) In situ X-ray diffraction and Raman spectroscopy of pressure-induced phase transformation in spinel Zn2TiO4. Phys Rev B 66:024103CrossRefGoogle Scholar
  92. Wang X, Tsuchiya T, Hase A (2015) Computational support for a pyrolitic lower mantle containing ferric iron. Nat Geosci 8:556–559CrossRefGoogle Scholar
  93. Wei SH, Zhang SB (2001) First-principles study of cation distribution in eighteen closed-shell AIIB2IIIO4 and AIVB2IIO4 spinel oxides. Phys Rev B 63:045112CrossRefGoogle Scholar
  94. Xiong Z, Liu X, Shieh SR, Wang F, Wu X, Hong X, Shi Y (2015) Equation of state of a synthetic ulvöspinel, (Fe1.94Ti0.03)Ti1.00O4.00, at ambient temperature. Phys Chem Minerals 42:171–177CrossRefGoogle Scholar
  95. Yamanaka T, Uchida A, Nakamoto Y (2008) Structural transition of post-spinel phases CaMn2O4, CaFe2O4, and CaTi2O4 under high pressures up to 80 GPa. Am Mineral 93:1874–1881CrossRefGoogle Scholar
  96. Yamanaka T, Kyono A, Nakamoto Y, Meng Y, Kharlamova S, Struzhkin VV, Mao HK (2013) High-pressure phase transitions of Fe3−xTixO4 solid solution up to 60 GPa correlated with electronic spin transition. Am Mineral 98:736–744CrossRefGoogle Scholar
  97. Yong W, Botis S, Shieh SR, Shi W, Withers AC (2012) Pressure-induced phase transition study of magnesiochromite (MgCr2O4) by Raman spectroscopy and X-ray diffraction. Phys Earth Planet Inter 196–197:75–82CrossRefGoogle Scholar
  98. Zhang Y, Liu X, Xiong Z, Zhang Z (2016) Compressional behavior of MgCr2O4 spinel from first-principles simulation. Sci China Earth Sci 59:989–996CrossRefGoogle Scholar
  99. Zunger A, Wei SH, Ferreira LG, Bernard JE (1990) Special quasirandom structures. Phys Rev Lett 65:353–356CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Yanyao Zhang
    • 1
    • 2
  • Xi Liu
    • 1
    • 2
  • Sean R. Shieh
    • 3
  • Xinjian Bao
    • 1
    • 2
  • Tianqi Xie
    • 3
  • Fei Wang
    • 1
    • 2
  • Zhigang Zhang
    • 4
  • Clemens Prescher
    • 5
  • Vitali B. Prakapenka
    • 5
  1. 1.Key Laboratory of Orogenic Belts and Crustal Evolution, MOEPeking UniversityBeijingPeople’s Republic of China
  2. 2.School of Earth and Space SciencesPeking UniversityBeijingPeople’s Republic of China
  3. 3.Department of Earth SciencesUniversity of Western OntarioLondonCanada
  4. 4.Key Laboratory of Earth and Planetary Physics, Institute of Geology and GeophysicsChinese Academy of SciencesBeijingPeople’s Republic of China
  5. 5.Center for Advanced Radiation SourcesUniversity of ChicagoChicagoUSA

Personalised recommendations