Advertisement

Physics and Chemistry of Minerals

, Volume 44, Issue 1, pp 63–73 | Cite as

High-pressure high-temperature phase relations in FeTiO3 up to 35 GPa and 1600 °C

  • M. Akaogi
  • K. Abe
  • H. Yusa
  • T. Ishii
  • T. Tajima
  • H. Kojitani
  • D. Mori
  • Y. Inaguma
Original Paper
  • 471 Downloads

Abstract

Phase relations in FeTiO3 were precisely determined at 25–35 GPa and 600–1600 °C using multianvil high-pressure experiments with tungsten carbide anvils. Pressure generation up to about 36 GPa at 1600 °C was evaluated using Al2O3 solubility in MgSiO3 perovskite (Pv) in the system MgSiO3–Al2O3. At about 28 GPa, FeTiO3 Pv dissociates into an assemblage of calcium titanate (CT)-type Fe2TiO4 + orthorhombic-I (OI)-type TiO2 below 1200 °C. However, above 1200 °C at 28 GPa, FeTiO3 Pv decomposes into a new, denser phase assemblage of CT-type Fe2TiO4 + a new compound of FeTi2O5. The new phase FeTi2O5 was recovered as an amorphous phase at 1 atm. In situ X-ray diffraction experiments at 35.1 GPa indicated that the new phase (N-p) FeTi2O5 has orthorhombic symmetry with cell parameters a = 8.567(2) Å, b = 5.753(1) Å and c = 5.257(1) Å. In addition, the assemblage of CT-type Fe2TiO4 + OI-type TiO2 changes to FeO wüstite (Wu) + OI-type TiO2 at about 33 GPa below 1000 °C. The phase assemblages in FeTiO3 are denser in the order: FeTiO3 (Pv) → 1/2Fe2TiO4 (CT) + 1/2TiO2 (OI) → 1/3Fe2TiO4 (CT) + 1/3FeTi2O5 (N-p) → FeO (Wu) + TiO2 (OI). Our results indicate that the upper stability limit of FeTiO3 Pv is about 28 GPa at 600–1600 °C. This puts a constraint on peak shock pressure for formation of naturally discovered lithium niobate-type FeTiO3 which was interpreted to be retrograde transition product of FeTiO3 Pv on release of shock pressure.

Keywords

Phase transition High pressure FeTiO3 Perovskite Lithium niobate FeTi2O5 

Notes

Acknowledgments

We are grateful to K. Takemura and T. Katsura for useful suggestions and K. Oka for his help in X-ray diffraction experiments. Constructive comments by anonymous reviewers were useful to improve the manuscript. Synchrotron X-ray diffraction experiments were performed under SPring-8 proposals (Nos. 2014B1492, 2015A1200, 2015A1204, 2015B1157). This work was supported in part by JSPS grants (No. 25287145 to M. A., No. 25106006 to H. Y. and No. 15H04128 to Y. I.) and by the MEXT-supported program for the Strategic Research Foundation at Private Universities.

References

  1. Akaogi M, Shirako Y, Kojitani H, Nagakari T, Yusa H, Yamaura K (2014) High-pressure transitions in NaZnF3 and NaMnF3 perovskites, and crystal-chemical characteristics of perovskite-postperovskite transitions in ABX3 fluorides and oxides. Phys Earth Planet Inter 228:160–169CrossRefGoogle Scholar
  2. Akaogi M, Abe K, Yusa H, Kojitani H, Mori D, Inaguma Y (2015) High-pressure phase behaviors of ZnTiO3: ilmenite–perovskite transition, decomposition of perovskite into constituent oxides, and perovskite–lithium niobate transition. Phys Chem Miner 42:421–429. doi: 10.1007/s00269-015-0733-1 CrossRefGoogle Scholar
  3. Dubrovinskaia NA, Dubrovinsky LS, Ahuja R, Prakapenka VB, Dmitriev V, Weber HP, Osorio-Guillen JM, Johansson B (2001) Experimental and theoretical identification of a new high-pressure TiO2 polymorph. Phys Rev Lett 87:275501–1–275501-4CrossRefGoogle Scholar
  4. Dubrovinsky L, El Goresy A, Gillet P, Wu X, Simionivici A (2009) A novel natural shock-induced high-pressure polymorph of FeTiO3 ilmenite with the Li-niobate structure from the Ries crater, Germany. Meteorit Planet Sci 44:A64Google Scholar
  5. El Goresy A, Chen M, Dubrovinsky L, Gillet P, Graup G (2001a) An ultradense polymorph of rutile with seven-coordinated titanium from the Ries Crater. Science 293:1467–1470CrossRefGoogle Scholar
  6. El Goresy A, Chen M, Gillet P, Dubrovinsky L, Graup G, Ahuja R (2001b) A natural shock-induced dense polymorph of rutile with α-PbO2 structure in the suevite from the Ries Crater in Germany. Earth Planet Sci Lett 192:485–495CrossRefGoogle Scholar
  7. El Goresy A, Dubrovinsky L, Gillet P, Graup G, Chen M (2010) Akaogiite: an ultra-dense polymorph of TiO2 with the baddeleyite-type structure, in shocked garnet gneiss from the Ries Crater, Germany. Am Mineral 95:892–895CrossRefGoogle Scholar
  8. Fei Y, Mao H-K (1994) In situ determination of the NiAs phase of FeO at high pressure and temperature. Science 266:1678–1680CrossRefGoogle Scholar
  9. Fei Y, Orman J Van, Li J, Western W Van, Sanloup C, Minarik W, Hirose K, Komabayashi T (2004) Experimentally determined post-spinel transformation boundary Mg2SiO4 using MgO as an internal pressure standard and its geophysical implications. J Geophys Res. doi: 10.1029/2003JB002562 Google Scholar
  10. Guo WQ, Malus S, Ryan DH, Altounian Z (1999) Crystal structure and cation distributions in the FeTi2O5–Fe2TiO5 solid solution series. J Phys Condens Matter 11:6337–6346CrossRefGoogle Scholar
  11. Ishii T, Shi L, Huang R, Tsujino N, Druzhbin D, Myhill R, Li Y, Wang L, Yamamoto T, Miyajima N, Kawazoe T, Nishiyama N, Higo Y, Tange Y, Katsura T (2016) Generation of pressure over 40 GPa using Kawai-type multi-anvil press with tungsten carbide anvils. Rev Sci Instr 87:024501–1–024501-6Google Scholar
  12. Ito E (2007) Theory and practice—multianvil cells and high-pressure experimental methods. In: Price GD (ed) Mineral Physics, Treatise on Geophysics, vol 2. Elsevier, Amsterdam, pp 197–230CrossRefGoogle Scholar
  13. Ito E, Kubo A, Katsura T, Akaogi M, Fujita T (1998) High-pressure transformation of pyrope (Mg3Al2Si3O12) in a sintered diamond cubic assembly. Geophys Res Lett 25:821–824CrossRefGoogle Scholar
  14. Jacobsen SD, Reichmann H-J, Spetzler HA, Mackwell SJ, Smyth JR, Angel RJ, McCammon CA (2002) Structure and elasticity of single-crystal (Mg, Fe)O and a new method of generating shear waves for gigahertz ultrasonic interferometry. J Geophys Res 107:4-1–4-14CrossRefGoogle Scholar
  15. Kondo T, Sawamoto H, Yoneda A, Kato M, Matsumuro A, Yagi T (1993) Ultra-high pressure and high-temperature generation by use of the MA8 system with sintered-diamond anvils. High Temp High Press 25:105–112Google Scholar
  16. Kubo A, Akaogi M (2000) Post-garnet transitions in the system Mg4Si4O12–Mg3Al2Si3O12 up to 28 GPa: phase relations of garnet, ilmenite and perovskite. Phys Earth Planet Inter 121:85–102CrossRefGoogle Scholar
  17. Leinenweber K, Utsumi W, Tsuchida Y, Yagi T, Kurita K (1991) Unquenchable high-pressure perovskite polymorphs of MnSnO3 and FeTiO3. Phys Chem Miner 18:244–250CrossRefGoogle Scholar
  18. Leinenweber KD, Tyburczy JA, Sharp TG, Soignard E, Diedich T, Petuskey WB, Wang Y, Mosenfelder JL (2012) Cell assemblies for reproducible multi-anvil experiments (the COMPRES assemblies). Am Miner 97:353–368CrossRefGoogle Scholar
  19. Liu Z, Irifune T, Nishi M, Tange Y, Arimoto T, Shinmei T (2016) Phase relations in the system MgSiO3–Al2O3 up to 52 GPa and 2000 K. Phys Earth Planet Inter 257:18–27CrossRefGoogle Scholar
  20. McCammon CA (1993) Effect of pressure on the composition of the lower mantle end member FexO. Science 259:66–68CrossRefGoogle Scholar
  21. Mehta A, Leinenweber K, Navrotsky A, Akaogi M (1994) Calorimetric study of high pressure polymorphism in FeTiO3: stability of the perovskite phase. Phys Chem Miner 21:207–212CrossRefGoogle Scholar
  22. Ming LC, Kim YH, Uchida T, Wang Y, Rivers M (2006) In situ X-ray diffraction study of phase transitions of FeTiO3 at high pressures and temperatures using a large-volume press and synchrotron radiation. Am Miner 91:120–126CrossRefGoogle Scholar
  23. Morishima H, Yusa H (1998) Numerical calculations of the temperature distribution and the cooling speed in the laser-heated diamond anvil cell. J Appl Phys 83:4572–4577CrossRefGoogle Scholar
  24. Murakami M, Hirose K, Kawamura K, Sata N, Ohishi Y (2004) Post-perovskite phase transition in MgSiO3. Science 304:855–858CrossRefGoogle Scholar
  25. Nishio-Hamane D, Shimizu A, Nakahira R, Niwa K, Sano-Furukawa A, Okada T, Yagi T, Kikegawa T (2010a) The stability and equation of state for the cotunnite phase of TiO2 up to 70 GPa. Phys Chem Miner 37:129–136CrossRefGoogle Scholar
  26. Nishio-Hamane D, Yagi T, Ohshiro M, Niwa K, Okada T, Seto Y (2010b) Decomposition of perovskitre FeTiO3 into wustite Fe1-xTi0.5xO and orthorhombic FeTi3O7 at high pressure. Phys Rev B 82:092103–1–092103–4CrossRefGoogle Scholar
  27. Nishio-Hamane D, Zhang M, Yagi T, Ma Y (2012) High-pressure and high-temperature phase transitions in FeTiO3 and a new dense FeTi3O7 structure. Am Mineral 97:568–572CrossRefGoogle Scholar
  28. Oganov AR, Ono S (2004) Theoretical and experimental evidence for a post-perovskite phase of MgSiO3 in Earth’s D’’ layer. Nature 430:445–448CrossRefGoogle Scholar
  29. Okada T, Yagi T, Nishio-Hamane D (2011) High-pressure phase behavior of MnTiO3: decomposition of perovskite into MnO and MnTi2O5. Phys Chem Minerals 38:251–258CrossRefGoogle Scholar
  30. Sakai T, Ohtani E, Hirao N, Ohishi Y (2011) Equation of state of the NaCl-B2 phase up to 304 GPa. J Appl Phys 109:084912. doi: 10.1063/1.3573393 CrossRefGoogle Scholar
  31. Seto Y, Nishio-Hamane D, Nagai T, Sata N (2010) Development of a software suite on X-ray diffraction experiments. Rev High Press Sci Tech 20:269–276CrossRefGoogle Scholar
  32. Shoemaker EM, Chao ECT (1961) New evidence for the impact origin of the Ries Basin, Bavaria, Germany. J Geophys Res 66:3371–3378CrossRefGoogle Scholar
  33. Syono Y, Yamauchi H, Ito A, Someya Y, Ito E, Matsui Y, Akaogi M, Akimoto S (1981) Magnetic properties of the disordered ilmenite FeTiO3 II synthesized at very high pressures. In: Watanabe H, Iida S, Sugimoto M (eds) Ferrites. Center Acad Publ, Japan, pp 192–195Google Scholar
  34. Varga T, Kumar A, Vlahos E, Denev S, Park M, Hong S, Sanehira T, Wang Y, Fennie CJ, Streiffer SK, Ke X, Schiffer P, Gopalan V, Mitchell JF (2009) Coexistence of weak ferromagnetism and ferroelectricity in the high pressure LiNbO3-type phase of FeTiO3. Phys Rev Lett 103:047601-1–047601-4CrossRefGoogle Scholar
  35. Wu X, Steinle-Neumann G, Narygina O, Kantor I, McCammon C, Prakapenka V, Swamy V, Dubrovinsky L (2009) High-pressure behavior of perovskite: FeTiO3 dissociation into (Fe1-δ, Tiδ)O and Fe1 + δ, Ti2 - δO5. Phys Rev Lett 103:065503-1–065503-4Google Scholar
  36. Yamanaka T, Komatsu Y, Nomori H (2007) Electron density distribution of FeTiO3 ilmenite under high pressure analyzed by MEM using single crystal diffraction intensities. Phys Chem Miner 34:307–318CrossRefGoogle Scholar
  37. Yamanaka T, Kyono A, Nakamoto Y, Meng Y, Kharlamova S, Struzhkin VV, Mao HK (2013) High-pressure phase transitions of Fe3−xTixO4 solid solution up to 60 GPa correlated with electronic spin transition. Am Miner 98:736–744CrossRefGoogle Scholar
  38. Yang X, Hazen RM (1999) Comparative high-pressure crystal chemistry of karrooite, MgTi2O5, with different ordering states. Am Miner 84:130–137CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of ChemistryGakushuin UniversityTokyoJapan
  2. 2.National Institute for Materials ScienceTsukubaJapan

Personalised recommendations