Physics and Chemistry of Minerals

, Volume 43, Issue 9, pp 615–626 | Cite as

Modeling the attenuated total reflectance infrared (ATR-FTIR) spectrum of apatite

  • Julie AufortEmail author
  • Loïc Ségalen
  • Christel Gervais
  • Christian Brouder
  • Etienne Balan
Original Paper


Attenuated total reflectance (ATR) infrared spectra were measured on a synthetic and a natural fluorapatite sample. A modeling approach based on the computation of the Fresnel reflection coefficient between the ATR crystal and the powder sample was used to analyze the line shape of the spectra. The dielectric properties of the samples were related to those of pure fluorapatite using an effective medium approach, based on Maxwell–Garnett and Bruggeman models. The Bruggeman effective medium model leads to a very good agreement with the experimental data recorded on the synthetic fluorapatite sample. The poorer agreement observed on the natural sample suggests a more significant heterogeneity of the sample at a characteristic length scale larger than the mid-infrared characteristic wavelength, i.e., about 10 micrometers. The results demonstrate the prominent role of macroscopic electrostatic effects over fine details of the microscopic structure in determining the line shape of strong ATR bands.


Apatite ATR-FTIR Infrared spectroscopy Effective medium Bruggeman model Attenuated total reflectance 



We thank G. Morin for providing us with the fluorapatite samples. Support by M. Guillaumet, I. Estève and the IMPMC spectroscopy and SEM–FIB facilities is acknowledged. We thank Prof E.K.H. Salje and an anonymous reviewer for thoughtful and constructive reviews of this manuscript. This work was supported by French state funds managed by the ANR within the Investissements d’Avenir program under reference ANR-11-IDEX-0004-02 and, more specifically, within the framework of the Cluster of Excellence MATISSE led by Sorbonne Universités. Support from the Convergence Program “Environnements & Société” of Sorbonne Universités is acknowledged.


  1. Adams DM, Gardner IR (1974) Single-crystal vibrational spectra of apatite, vanadinite and mimetite. J Chem Soc Dalton 14:1505–1509CrossRefGoogle Scholar
  2. Antonakos A, Liarokapis E, Leventouri T (2007) Micro-Raman and FTIR studies of synthetic and natural apatites. Biomaterials 28:3043–3054CrossRefGoogle Scholar
  3. Balan E, Mauri F, Lemaire C, Brouder C, Guyot F, Saitta AM, Devouard B (2002) Multiple ionic plasmon resonances in naturally-occurring multiwall nanotubes: infrared spectra of chrysotile asbestos. Phys Rev Lett 89:177401CrossRefGoogle Scholar
  4. Balan E, Delattre S, Guillaumet M, Salje EKH (2010) Low-temperature infrared spectroscopic study of OH stretching modes in kaolinite and dickite. Am Mineral 95:1257–1266CrossRefGoogle Scholar
  5. Balan E, Delattre S, Roche D, Segalen L, Morin G, Guillaumet M, Blanchard M, Lazzeri M, Brouder C, Salje EKH (2011) Line-broadening effects in the powder infrared spectrum of apatite. Phys Chem Miner 38:111–122CrossRefGoogle Scholar
  6. Beasley MM, Bartelink EJ, Taylor L, Miller RM (2014) Comparison of transmission FTIR, ATR, and DRIFT spectra: implications for assessment of bone bioapatite diagenesis. J Archaeol Sci 46:16–22CrossRefGoogle Scholar
  7. Bisal F, Hinman WC (1972) A method of estimating the apparent density of soil aggregates. Can J Soil Sci 52:513–514CrossRefGoogle Scholar
  8. Born M, Wolf E (1980) Principles of optics, 6th edn. Pergamon Press, New YorkGoogle Scholar
  9. Bruggeman DAG (1935) Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen. Ann Phys 416:665–679CrossRefGoogle Scholar
  10. Cherkaeva E, Golden KM (1998) Inverse bounds for microstructural parameters of composite media derived from complex permittivity measurements. Wave Random Media 8(4):437–450CrossRefGoogle Scholar
  11. Chevrinais M, Balan E, Cloutier R (2016) New insights in the ontogeny and taphonomy of the devonian acanthodian Triazeugacanthus affinis from the Miguasha Fossil-Lagerstätte, Eastern Canada. Minerals 6:1CrossRefGoogle Scholar
  12. Elliott JC (2002) Calcium phosphate biominerals. In: Kohn MJ, Rakovan J, Hughes JM (eds) Phosphates: geochemical, geobiological, and materials importance, vol 48. Reviews in Mineralogy and Geochemistry, Mineralogical Society of America and Geochemical Society, Chantilly, Virginia, pp 427–453Google Scholar
  13. Fleet ME (2009) Infrared spectra of carbonate apatites: ν2-region bands. Biomaterials 30:1473–1481CrossRefGoogle Scholar
  14. Fleet ME, Liu X (2008) Accommodation of the carbonate ion in fluorapatite synthesized at high pressure. Am Mineral 93:1460–1469CrossRefGoogle Scholar
  15. Gadenne M, Lafait J, Gadenne P (1989) Infrared absorption of Au-Al2O3 thin cermet films: experiment, Bruggeman model, far and near the percolation threshold. Phys A 157:400–406CrossRefGoogle Scholar
  16. Garnett JCM (1904) Colours in metal glasses and metallic films. Philos Trans R Soc A 203:385–420CrossRefGoogle Scholar
  17. Kendrick J, Burnett AD (2016) PDielec: the calculation of infrared and terahertz absorption for powdered crystals. J Comput Chem 37:1491–1504CrossRefGoogle Scholar
  18. Klee WE (1970) The vibrational spectra of the phosphate ions in fluorapatite. Z Kristallogr 131:95–102CrossRefGoogle Scholar
  19. Knudsen AC, Gunter ME (2002) Sedimentary phosphates—an example: phosphoria formation, Southern Idaho, U.S.A. In: Kohn MJ, Rakovan J, Hughes JM (eds) Phosphates: geochemical, geobiological and materials importance. Rev Mineral Geochem 48:363–389Google Scholar
  20. Landauer R (1978) Electrical conductivity in inhomogeneous media. AIP Conf Proc 40:2–45CrossRefGoogle Scholar
  21. Lang L, Kirsimäe K, Vahur S (2016) Diagenetic fate of bioapatite in linguliform brachiopods: multiple apatite phases in shells of Cambrian lingulate brachiopod Ungula ingrica (Eichwald). Lethaia 49:13–27CrossRefGoogle Scholar
  22. Lebon M, Zazzo A, Reiche I (2014) Screening in situ bone and teeth preservation by ATR-FTIR mapping. Palaeogeogr, Palaeoclimatol 416:110–119CrossRefGoogle Scholar
  23. Leroy G, Leroy N, Penel G, Rey C, Laforgue P, Bres E (2000) Polarized micro-Raman study of fluorapatite single crystals. Appl Spectrosc 54(10):1521–1527CrossRefGoogle Scholar
  24. Leventouri T, Chakoumakos BC, Moghaddam HY, Perdikatsis V (2000) Powder neutron diffraction studies of a carbonate fluorapatite. J Mater Res 15:511–517CrossRefGoogle Scholar
  25. Levy O, Stroud D (1997) Maxwell Garnett theory for mixtures of anisotropic inclusions: application to conducting polymers. Phys Rev B 56:8035–8046CrossRefGoogle Scholar
  26. Meyer H-W, Carpenter MA, Becerro AI, Seifert F (2002) Hard-mode infrared spectroscopy of perovskites across the CaTiO3–SrTiO3 solid solution. Am Mineral 87:1291–1296CrossRefGoogle Scholar
  27. Michel V, Ildefonse P, Morin G (1995) Chemical and structural changes in Cervus Elaphus tooth enamels during fossilization (Lazaret cave): a combined IR and XRD Rietveld analysis. Appl Geochem 10:145–159CrossRefGoogle Scholar
  28. Morin G, Allard T, Balan E, Ildefonse P, Calas G (2002) Native Cd+ in sedimentary fluorapatite. Eur J Mineral 14:1087–1094CrossRefGoogle Scholar
  29. Nounah A, Lacout JL (1993) Thermal behavior of cadmium containing apatites. J Solid State Chem 107:444–451CrossRefGoogle Scholar
  30. Pan Y, Fleet M (2002) Compositions of the apatite-group minerals: substitution mechanisms and controlling factors. In: Kohn MJ, Rakovan J, Hughes JM (eds) Phosphates: geochemical, geobiological and materials importance. Rev Miner Geochem 48:13–49Google Scholar
  31. Pucéat E, Reynard B, Lécuyer C (2004) Can crystallinity be used to determine the degree of chemical alteration of biogenic apatites? Chem Geol 205:83–97CrossRefGoogle Scholar
  32. Reynard B, Balter V (2014) Trace elements and their isotopes in bones and teeth: diet, environments, diagenesis, and dating of archeological and paleontological samples. Palaeogeogr, Palaeoclimatol 416:4–16CrossRefGoogle Scholar
  33. Roche D, Segalen L, Balan E, Delattre S (2010) Preservation assessment of Miocene–Pliocene tooth enamel from Tugen Hills (Kenyan Rift Valley) through FTIR, chemical and stable-isotope analyses. J Archaeol Sci 37:1690–1699CrossRefGoogle Scholar
  34. Salje EKH, Bismayer U (1997) Hard mode spectroscopy: the concept and applications. Phase Transit 63:1–75CrossRefGoogle Scholar
  35. Salje E, Güttler B (1984) Anderson transition and intermediate polaron formation in WO3−x Transport properties and optical absorption. Philos Mag B 50:607–620CrossRefGoogle Scholar
  36. Salje EKH, Yagil Y (1996) Hard mode spectroscopy for the investigation of structural and superconducting phase transitions. J Phys Chem Solids 57:1413–1424CrossRefGoogle Scholar
  37. Salje EKH, Carpenter MA, Malcherek T, Boffa Balaran T (2000) Autocorrelation analysis of infrared spectra from minerals. Eur J Mineral 12:503–519CrossRefGoogle Scholar
  38. Shemesh A (1990) Crystallinity and diagenesis of sedimentary apatites. Geochim Cosmochim Acta 54:2433–2438CrossRefGoogle Scholar
  39. Shusko MY (2009) Effective permittivity of mixtures of anisotropic particles. J Phys D Appl Phys 42(15):155410CrossRefGoogle Scholar
  40. Sihvola AH, Kong JA (1988) Effective permittivity of dielectric mixtures. IEEE T Geosci Remote 26:420–429CrossRefGoogle Scholar
  41. Spanier JE, Herman IP (2000) Use of hybrid phenomenological and statistical effective-medium theories of dielectric functions to model the infrared reflectance of porous SiC films. Phys Rev B 61:10437–10450CrossRefGoogle Scholar
  42. Stathopoulou ET, Psycharis V, Chryssikos GD, Gionis V, Theodorou G (2008) Bone diagenesis: new data from infrared spectroscopy and X-ray diffraction. Palaeogeogr, Palaeoclimatol 266:168–174CrossRefGoogle Scholar
  43. Surovell TA, Stiner MC (2001) Standardizing infra-red measures of bone mineral crystallinity: an experimental approach. J Archaeol Sci 28:633–642CrossRefGoogle Scholar
  44. Thompson TJU, Gauthier M, Islam M (2009) The application of a new method of fourier transform infrared spectroscopy to the analysis of burned bone. J Archaeol Sci 36:910–914CrossRefGoogle Scholar
  45. Trueman CN, Privat K, Field J (2008) Why do crystallinity values fail to predict the extent of diagenetic alteration of bone mineral? Palaeogeogr, Palaeoclimatol 266:160–167CrossRefGoogle Scholar
  46. Walker D, Scharnberg K (1990) Electromagnetic response of high-Tc superconductors. Phys Rev B 42:2211–2221CrossRefGoogle Scholar
  47. Waychunas GA, Zhang H (2008) Structure, chemistry and properties of mineral nanoparticles. Elements 4:381–387CrossRefGoogle Scholar
  48. Weiner S, Bar-Yosef O (1990) States of preservation of bones from prehistoric sites in the Near East: a survey. J Archaeol Sci 17:187–196CrossRefGoogle Scholar
  49. Yagil Y, Baudenbacher F, Zhang M, Birch JR, Kinder H, Salje EKH (1995) Optical properties of YBa2Cu3O7−d thin films. Phys Rev B 52:15582–15591CrossRefGoogle Scholar
  50. Yi H, Balan E, Gervais C, Segalen L, Fayon F, Roche D, Person A, Morin G, Guillaumet M, Blanchard M, Lazzeri M, Babonneau F (2013) A carbonate-fluoride defect model for carbonate-rich fluorapatite. Am Mineral 98:1066–1069CrossRefGoogle Scholar
  51. Yi H, Balan E, Gervais C, Segalen L, Roche D, Fayon F, Person A, Morin G, Babonneau F (2014) Probing atomic scale transformation of fossil enamel using FTIR and NMR spectroscopy: a case study from the Tugen Hills (Rift Gregory, Kenya). Acta Biomater 10:3952–3958CrossRefGoogle Scholar
  52. Zhang M, Wruck B, Graeme Barber A, Salje EKH, Carpenter MA (1996) Phonon spectroscopy on alkali-feldspars: phase transitions and solid solutions. Am Mineral 81:92–104CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Julie Aufort
    • 1
    Email author
  • Loïc Ségalen
    • 2
  • Christel Gervais
    • 3
  • Christian Brouder
    • 1
  • Etienne Balan
    • 1
  1. 1.Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), UMR CNRS 7590, UMR IRD 206Sorbonne Universités, UPMC Université Paris 6Paris Cedex 05France
  2. 2.ISTEP, Biominéralisations et Environnements Sédimentaires, UMR 7193Sorbonne Universités, UPMC Université Paris 6Paris Cedex 05France
  3. 3.Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), Collège de FranceSorbonne Universités, UPMC Université Paris 6ParisFrance

Personalised recommendations