Physics and Chemistry of Minerals

, Volume 43, Issue 8, pp 597–613 | Cite as

Texture development and slip systems in bridgmanite and bridgmanite + ferropericlase aggregates

  • L. Miyagi
  • H.-R. Wenk
Original Paper


Bridgmanite (Mg,Fe)SiO3 and ferropericlase (Mg,Fe)O are the most abundant phases in the lower mantle and localized regions of the D″ layer just above the core mantle boundary. Seismic anisotropy is observed near subduction zones at the top of the lower mantle and in the D″ region. One source of anisotropy is dislocation glide and associated texture (crystallographic preferred orientation) development. Thus, in order to interpret seismic anisotropy, it is important to understand texture development and slip system activities in bridgmanite and bridgmanite + ferropericlase aggregates. Here we report on in situ texture development in bridgmanite and bridgmanite + ferropericlase aggregates deformed in the diamond anvil cell up to 61 GPa. When bridgmanite is synthesized from enstatite, it exhibits a strong (4.2 m.r.d.) 001 transformation texture due to a structural relationship with the precursor enstatite phase. When bridgmanite + ferropericlase are synthesized from olivine or ringwoodite, bridgmanite exhibits a relatively weak 100 transformation texture (1.2 and 1.6 m.r.d., respectively). This is likely due to minimization of elastic strain energy as a result of Young’s modulus anisotropy. In bridgmanite, 001 deformation textures are observed at pressures <55 GPa. The 001 texture is likely due to slip on (001) planes in the [100], [010] and \(\left\langle {110} \right\rangle\) directions. Stress relaxation by laser annealing to 1500–1600 K does not result in a change in this texture type. However, at pressures >55 GPa a change in texture to a 100 maximum is observed, consistent with slip on the (100) plane. Ferropericlase, when deformed with bridgmanite, does not develop a coherent texture. This is likely due to strain heterogeneity within the softer ferropericlase grains. Thus, it is plausible that ferropericlase is not a significant source of anisotropy in the lower mantle.


Diamond anvil cell Bridgmanite Ferropericlase Deformation Slip systems Seismic anisotropy 



Portion of this work was performed at HPCAT (Sector 16), Advanced Photon Source (APS), Argonne National Laboratory. HPCAT is supported by DOE-BES, DOE-NNSA, NSF, and the W.M. Keck Foundation. APS is supported by DOE-BES, under Contract No. DE-AC02-06CH11357. Remaining portions of this work were performed at the Advanced Light Source (ALS). The ALS is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract No. DE-AC02-05CH11231. COMPRES, the Consortium for Materials Properties Research in Earth Sciences under NSF Cooperative Agreement EAR 01-35554 supported this project through funding crucial beamline equipment. LM acknowledges support from CDAC and NSF (EAR-0337006). HRW acknowledges support from NSF (EAR-1343908, CSEDI 1067513). We acknowledge help from beamline scientists, particularly Y. Meng at APS and M. Kunz at ALS.

Supplementary material

269_2016_820_MOESM1_ESM.pdf (346 kb)
Supplementary material 1 (PDF 345 kb)


  1. Amodeo J, Carrez P, Cordier P (2012) Modeling the effect of pressure on the critical shear stress of MgO single crystals. Philos Mag 92:1523–1541. doi: 10.1080/14786435.2011.652689 CrossRefGoogle Scholar
  2. Carrez P, Ferré D, Cordier P (2007) Peierls-Nabarro model for dislocations in MgSiO3 post-perovskite calculated at 120 GPa from first principles. Philos Mag 87:3229–3247. doi: 10.1080/14786430701268914 CrossRefGoogle Scholar
  3. Carter NL (1976) Steady state flow of rocks. Rev Geophys 14:301–360. doi: 10.1029/RG014i003p00301 CrossRefGoogle Scholar
  4. Carter NL, Heard HC (1970) Temperature and rate-dependent deformation of halite. Am J Sci 269:193–249. doi: 10.2475/ajs.269.3.193 CrossRefGoogle Scholar
  5. Chang S-J, Ferreira AMG, Ritsema J, van Heijst HJ, Woodhouse JH (2014) Global radially anisotropic mantle structure from multiple datasets: a review, current challenges, and outlook. Tectonophysics 617:1–19. doi: 10.1016/j.tecto.2014.01.033 CrossRefGoogle Scholar
  6. Chen J, Weidner DJ, Vaughan MT (2002) The strength of Mg0.9Fe0.1SiO3 perovskite at high pressure and temperature. Nature 419:824–826. doi: 10.1038/nature01130 CrossRefGoogle Scholar
  7. Cordier P (2002) Dislocations and slip systems of mantle minerals. In: Karato SI, Wenk HR (eds) Plastic deformation of minerals and rocks. Mineralogical Society of America, pp 137–179. doi: 10.2138/gsrmg.51.1.137
  8. Cordier P, Ungár T, Zsoldos L, Tichy G (2004) Dislocation creep in MgSiO3 perovskite at conditions of the Earth’s uppermost lower mantle. Nature 428:837–840. doi: 10.1038/nature02472 CrossRefGoogle Scholar
  9. Cottaar S, Romanowicz B (2013) Observations of changing anisotropy across the southern margin of the African LLSVP. Geophys J Int ggt285. doi: 10.1093/gji/ggt285
  10. Dawson PR (2002) Modeling deformation of polycrystalline rocks. In: Karato SI, Wenk HR (eds) Plastic deformation of minerals and rocks. Mineralogical Society of America, pp 331–351. doi: 10.2138/gsrmg.51.1.331
  11. Fei Y, Ricolleau A, Frank M, Mibe K, Shen G, Prakapenka V (2007) Toward an internally consistent pressure scale. Proc Natl Acad Sci 104:9182–9186. doi: 10.1073/pnas.0609013104 CrossRefGoogle Scholar
  12. Ferré D, Carrez P, Cordier P (2007) First principles determination of dislocations properties of MgSiO3 perovskite at 30 GPa based on the Peierls-Nabarro model. Phys Earth Planet Inter 163:283–291. doi: 10.1016/j.pepi.2007.05.011 CrossRefGoogle Scholar
  13. Girard J, Chen J, Raterron P (2012) Deformation of periclase single crystals at high pressure and temperature: quantification of the effect of pressure on slip-system activities. J Appl Phys 111(11):112607. doi: 10.1063/1.4726200 CrossRefGoogle Scholar
  14. Girard J, Amulele G, Farla R, Mohiuddin A, Karato S (2016) Shear deformation of bridgmanite and magnesiowüstite aggregates at lower mantle conditions. Science 351:144–147. doi: 10.1126/science.aad3113 CrossRefGoogle Scholar
  15. Gouriet K, Carrez P, Cordier P (2014) Modelling [100] and [010] screw dislocations in MgSiO3 perovskite based on the Peierls–Nabarro–Galerkin model. Model Simul Mater Sci Eng 22:025020. doi: 10.1088/0965-0393/22/2/025020 CrossRefGoogle Scholar
  16. Hammersley AP, Svensson SO, Hanfland M, Fitch AN, Hausermann D (1996) Two-dimensional detector software: from real detector to idealised image or two-theta scan. High Press Res 14:235–248. doi: 10.1080/08957959608201408 CrossRefGoogle Scholar
  17. Handy MR (1994) Flow laws for rocks containing 2 nonlinear viscous phases: a phenomenological approach. J Struct Geol 16:287–301. doi: 10.1016/0191-8141(94)90035-3 CrossRefGoogle Scholar
  18. Heidelbach F, Stretton I, Langenhorst F, Mackwell S (2003) Fabric evolution during high shear strain deformation of magnesiowüstite (Mg0.8Fe0.2O). J Geophys Res Solid Earth 108:2154. doi: 10.1029/2001JB001632 CrossRefGoogle Scholar
  19. Hernlund JW, Thomas C, Tackley PJ (2005) A doubling of the post-perovskite phase boundary and structure of the Earth’s lowermost mantle. Nature 434:882–886. doi: 10.1038/nature03472 CrossRefGoogle Scholar
  20. Hirel P, Kraych A, Carrez P, Cordier P (2014) Atomic core structure and mobility of [100](010) and [010](100) dislocations in MgSiO3 perovskite. Acta Mater 79:117–125. doi: 10.1016/j.actamat.2014.07.001 CrossRefGoogle Scholar
  21. Karato S, Zhang S, Wenk H-R (1995) Superplasticity in Earth’s lower mantle: evidence from seismic anisotropy and rock physics. Science 270:458–461. doi: 10.1126/science.270.5235.458 CrossRefGoogle Scholar
  22. Komabayashi T, Hirose K, Nagaya Y, Sugimura E, Ohishi Y (2010) High-temperature compression of ferropericlase and the effect of temperature on iron spin transition. Earth and Planet Sci Lett 297(3–4):691–699. doi: 10.1016/j.epsl.2010.07.025 CrossRefGoogle Scholar
  23. Kraych A, Carrez P, Hirel P, Clouet E, Cordier P (2016) Peierls potential and kink-pair mechanism in high-pressure MgSiO3 perovskite: an atomic scale study. Phys Rev B 93:014103. doi: 10.1103/PhysRevB.93.014103 CrossRefGoogle Scholar
  24. Kuroda K, Irifune T, Inoue T, Nishiyama N, Miyashita M, Funakoshi K, Utsumi W (2000) Determination of the phase boundary between ilmenite and perovskite in MgSiO3 by in situ X-ray diffraction and quench experiments. Phys Chem Min 27(8):523–532. doi: 10.1007/s002690000096 CrossRefGoogle Scholar
  25. Lebensohn RA, Tomé CN (1994) A self-consistent viscoplastic model: prediction of rolling textures of anisotropic polycrystals. Mater Sci Eng A 175:71–82. doi: 10.1016/0921-5093(94)91047-2 CrossRefGoogle Scholar
  26. Lebensohn RA, Rollett AD, Suquet P (2011) Fast fourier transform-based modeling for the determination of micromechanical fields in polycrystals. JOM 63:13–18. doi: 10.1007/s11837-011-0037-y CrossRefGoogle Scholar
  27. Lin J-F, Wenk H-R, Voltolini M, Speziale S, Shu J, Duffy T (2009) Deformation of lower-mantle ferropericlase (Mg, Fe)O across the electronic spin transition. Phys Chem Miner 36:585–592. doi: 10.1007/s00269-009-0303-5 CrossRefGoogle Scholar
  28. Lundin S, Catalli K, Santillán J, Shim S-H, Prakapenka VB, Kunz M, Meng Y (2008) Effect of Fe on the equation of state of mantle silicate perovskite over 1 Mbar. Phys Earth Planet Inter 168:97–102. doi: 10.1016/j.pepi.2008.05.002 CrossRefGoogle Scholar
  29. Lutterotti L, Scardi P (1990) Simultaneous structure and size-strain refinement by the Rietveld method. J Appl Crystallogr 23:246–252. doi: 10.1107/S0021889890002382 CrossRefGoogle Scholar
  30. Lutterotti L, Vasin R, Wenk H-R (2014) Rietveld texture analysis from synchrotron diffraction images. I calibration and basic analysis. Powder Diffr 29:76–84. doi: 10.1017/S0885715613001346 CrossRefGoogle Scholar
  31. Lynner C, Long MD (2014) Lowermost mantle anisotropy and deformation along the boundary of the African LLSVP. Geophys Res Lett 41(10):3447–3454. doi: 10.1002/2014GL059875
  32. Mainprice D, Tommasi A, Ferré D, Carrez P, Cordier P (2008) Predicted glide systems and crystal preferred orientations of polycrystalline silicate Mg-Perovskite at high pressure: implications for the seismic anisotropy in the lower mantle. Earth and Planet Sci Lett 271:135–144. doi: 10.1016/j.epsl.2008.03.058 CrossRefGoogle Scholar
  33. Marquardt H, Miyagi L (2015) Slab stagnation in the shallow lower mantle linked to an increase in mantle viscosity. Nature Geosci 8:311–314. doi: 10.1038/ngeo2393 CrossRefGoogle Scholar
  34. Marquardt H, Speziale S, Reichmann HJ, Frost DJ, Schilling FR (2009) Single-crystal elasticity of (Mg0.9Fe0.1)O to 81 GPa. Earth and Planet Sci Lett 287:345–352. doi: 10.1016/j.epsl.2009.08.017 CrossRefGoogle Scholar
  35. Martinez I, Wang Y, Guyot F, Liebermann RC, Doukhan J-C (1997) Microstructures and iron partitioning in (Mg, Fe)SiO3 perovskite-(Mg, Fe)O magnesiowüstite assemblages: an analytical transmission electron microscopy study. J Geophys Res 102:5265–5280. doi: 10.1029/96JB03188 CrossRefGoogle Scholar
  36. Matthies S, Humbert M (1993) The Realization of the concept of a geometric mean for calculating physical constants of polycrystalline materials. Phys Status Solidi (b) 177:K47–K50. doi: 10.1002/pssb.2221770231 CrossRefGoogle Scholar
  37. Matthies S, Vinel GW (1982) On the reproduction of the orientation distribution function of texturized samples from reduced pole figures using the conception of a conditional ghost correction. Phys Status Solidi (b) 112:K111–K114. doi: 10.1002/pssb.2221120254 CrossRefGoogle Scholar
  38. Matthies S, Priesmeyer HG, Daymond MR (2001) On the diffractive determination of single-crystal elastic constants using polycrystalline samples. J Appl Crystallogr 34:585–601. doi: 10.1107/S002188980101048 CrossRefGoogle Scholar
  39. Meade C, Jeanloz R (1990) The strength of mantle silicates at high pressures and room temperature: implications for the viscosity of the mantle. Nature 348:533–535. doi: 10.1038/348533a0 CrossRefGoogle Scholar
  40. Meade C, Silver PG, Kaneshima S (1995) Laboratory and seismological observations of lower mantle isotropy. Geophys Res Lett 22:1293–1296. doi: 10.1029/95GL01091 CrossRefGoogle Scholar
  41. Merkel S, Yagi T (2005) X-ray transparent gasket for diamond anvil cell high pressure experiments. Rev Sci Instrum 76:046109. doi: 10.1063/1.1884195 CrossRefGoogle Scholar
  42. Merkel S, Wenk H-R, Shu J, Shen G, Gillet P, Mao H-K, Hemley RJ (2002) Deformation of polycrystalline MgO at pressures of the lower mantle. J Geophys Res 107:2271. doi: 10.1029/2001JB000920 CrossRefGoogle Scholar
  43. Merkel S, Wenk H-R, Badro J, Montagnac G, Gillet P, Mao H, Hemley RJ (2003) Deformation of (Mg0.9, Fe0.1)SiO3 Perovskite aggregates up to 32 GPa. Earth Planet Sci Lett 209:351–360. doi: 10.1016/S0012-821X(03)00098-0 CrossRefGoogle Scholar
  44. Merkel S, Kubo A, Miyagi L, Speziale S, Duffy TS, Mao H-K, Wenk H-R (2006) Plastic Deformation of MgGeO3 Post-Perovskite at Lower Mantle Pressures. Science 311(5761):644–646. doi: 10.1126/science.1121808 CrossRefGoogle Scholar
  45. Miyagi L, Kunz M, Knight J, Nasiatka J, Voltolini M, Wenk H-R (2008) In situ phase transformation and deformation of iron at high pressure and temperature. J Appl Phys 104:103510–103519. doi: 10.1063/1.3008035 CrossRefGoogle Scholar
  46. Miyagi L, Kanitpanyacharoen W, Stackhouse S, Militzer B, Wenk H-R (2011) The enigma of post-perovskite anisotropy: deformation versus transformation textures. Phys Chem Miner 38:665–678. doi: 10.1007/s00269-011-0439-y CrossRefGoogle Scholar
  47. Miyagi L, Amulele G, Otsuka K, Du Z, Farla R, Karato S-I (2014) Plastic anisotropy and slip systems in ringwoodite deformed to high shear strain in the Rotational Drickamer Apparatus. Phys Earth Planet Inter High-Press Res Earth Sci Crust Mantle Core 228:244–253. doi: 10.1016/j.pepi.2013.09.012 Google Scholar
  48. Miyajima N, Yagi T, Ichihara M (2009) Dislocation microstructures of MgSiO3 perovskite at a high pressure and temperature condition. Phys Earth Planet Inter 174:153–158. doi: 10.1016/j.pepi.2008.04.004 CrossRefGoogle Scholar
  49. Murakami M, Hirose K, Kawamura K, Sata N, Ohishi Y (2004) Post-perovskite phase transition in MgSiO3. Science 304:855–858. doi: 10.1126/science.1095932 CrossRefGoogle Scholar
  50. Murakami M, Sinogeikin SV, Bass JD, Sata N, Ohishi Y, Hirose K (2007) Sound velocity of MgSiO3 post-perovskite phase: a constraint on the D″ discontinuity. Earth Planet Sci Lett 259:18–23. doi: 10.1016/j.epsl.2007.04.015 CrossRefGoogle Scholar
  51. Navrotsky A, Weidner DJ (eds) (1989) Perovskite: a structure of great interest to geophysics and materials science. Geophysical Monograph 45, American Geophysical Union, Washington DCGoogle Scholar
  52. Oganov AR, Ono S (2004) Theoretical and experimental evidence for a post-perovskite phase of MgSiO3 in Earth’s D″ layer. Nature 430:445–448. doi: 10.1038/nature02701 CrossRefGoogle Scholar
  53. Okada T, Yagi T, Niwa K, Kikegawa T (2010) Lattice-preferred orientations in post-perovskite-type MgGeO3 formed by transformations from different pre-phases. Phys Earth Planet Inter 180(3–4):195–202. doi: 10.1016/j.pepi.2009.08.002 CrossRefGoogle Scholar
  54. Shim S-H, Duffy TS, Jeanloz R, Shen G (2004) Stability and crystal structure of MgSiO3 perovskite to the core-mantle boundary. Geophys Res Lett 31:L10603. doi: 10.1029/2004GL019639 CrossRefGoogle Scholar
  55. Singh AK (1993) The lattice strains in a specimen (cubic system) compressed nonhydrostatically in an opposed anvil device. J Appl Phys 73:4278–4286. doi: 10.1063/1.352809 CrossRefGoogle Scholar
  56. Stretton I, Heidelbach F, Mackwell S, Langenhorst F (2001) Dislocation creep of magnesiowüstite (Mg0.8Fe0.2O). Earth Planet Sci Lett 194(1–2):229–240. doi: 10.1016/S0012-821X(01)00533-7 CrossRefGoogle Scholar
  57. Toby BH (2006) R factors in Rietveld analysis: How good is good enough? Powder Diffr 21(1):67–70. doi: 10.1154/1.2179804 CrossRefGoogle Scholar
  58. Tommaseo C, Devine J, Merkel S, Speziale S, Wenk H-R (2006) Texture development and elastic stresses in magnesiowűstite at high pressure. Phys Chem Miner 33(2):84–97. doi: 10.1007/s00269-005-0054-x CrossRefGoogle Scholar
  59. Vinnik L, Romanowicz B, Le Stunff Y, Makeyeva L (1995) Seismic anisotropy in the D″ layer. Geophys Res Lett 22:1657–1660. doi: 10.1029/95GL01327 CrossRefGoogle Scholar
  60. Walte N, Heidelbach F, Miyajima N, Frost D (2007) Texture development and TEM analysis of deformed CaIrO3: implications for the D″ layer at the core-mantle boundary. Geophys Res Lett 34(8):L08306. doi: 10.1029/2007GL029407 CrossRefGoogle Scholar
  61. Wang Y, Guyot F, Yeganeh-Haeri A, Liebermann RC (1990) Twinning in MgSiO3 perovskite. Sci 248:468–471. doi: 10.1126/science.248.4954.468 CrossRefGoogle Scholar
  62. Wang Y, Guyot F, Liebermann RC (1992) Electron microscopy of (Mg, Fe)SiO3 perovskite: evidence for structural phase transitions and implications for the lower mantle. J Geophys Res 97:12327–12347. doi: 10.1029/92JB00870 CrossRefGoogle Scholar
  63. Wang Y, Hilairet N, Nishiyama N, Yahata N, Tsuchiya T, Morard G, Fiquet G (2013) High-pressure, high-temperature deformation of CaGeO3 (perovskite) ± MgO aggregates: implications for multiphase rheology of the lower mantle. Geochem Geophys Geosyst 14(9):3389–3408. doi: 10.1002/ggge.20200 CrossRefGoogle Scholar
  64. Wang X, Tsuchiya T, Hase A (2015) Computational support for a pyrolitic lower mantle containing ferric iron. Nature Geosci 8(7):556–559. doi: 10.1038/ngeo2458 CrossRefGoogle Scholar
  65. Wenk HR, Matthies S, Donovan J, Chateigner D (1998) BEARTEX: a Windows-based program system for quantitative texture analysis. J Appl Crystallogr 31:262–269. doi: 10.1107/S002188989700811X CrossRefGoogle Scholar
  66. Wenk H-R, Lonardelli I, Pehl J, Devine JM, Prakapenka VB, Shen G, Mao H (2004) In situ observation of texture development in olivine, ringwoodite, magnesiowustite and silicate perovskite at high pressure. Earth Planet Sci Lett 226:507–519. doi: 10.1016/j.epsl.2004.07.033 CrossRefGoogle Scholar
  67. Wenk H-R, Lonardelli I, Merkel S, Miyagi L, Pehl J, Speziale S, Tommaseo CE (2006a) Deformation textures produced in diamond anvil experiments, analysed in radial diffraction geometry. J Phys Condens Matter 18:S933–S947. doi: 10.1088/0953-8984/18/25/S02 CrossRefGoogle Scholar
  68. Wenk H-R, Speziale S, McNamara AK, Garnero EJ (2006b) Modeling lower mantle anisotropy development in a subducting slab. Earth Planet Sci Lett 245:302–314. doi: 10.1016/j.epsl.2006.02.028 CrossRefGoogle Scholar
  69. Wenk H-R, Lutterotti L, Kaercher P, Kanitpanyacharoen W, Miyagi L, Vasin R (2014) Rietveld texture analysis from synchrotron diffraction images. II. Complex multiphase materials and diamond anvil cell experiments. Powder Diffr 29:220–232. doi: 10.1017/S0885715614000360 CrossRefGoogle Scholar
  70. Wentzcovitch RM, Karki BB, Karato S, Da Silva CRS (1998) High pressure elastic anisotropy of MgSiO3 perovskite and geophysical implications. Earth Planet Sci Lett 164:371–378. doi: 10.1016/S0012-821X(98)00230-1 CrossRefGoogle Scholar
  71. Wookey J, Kendall J-M, Barruol G (2002) Mid-mantle deformation inferred from seismic anisotropy. Nature 415:777–780. doi: 10.1038/415777a CrossRefGoogle Scholar
  72. Yamazaki D, Karato S (2002) Fabric development in (Mg, Fe)O during large strain, shear deformation: implications for seismic anisotropy in Earth’s lower mantle. Phys Earth Planet Inter 131(3–4):251–267. doi: 10.1016/S0031-9201(02)00037-7 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.University of UtahSalt Lake CityUSA
  2. 2.University of California BerkeleyBerkeleyUSA

Personalised recommendations