Physics and Chemistry of Minerals

, Volume 43, Issue 8, pp 571–586 | Cite as

Hydrogen bond effects on compressional behavior of isotypic minerals: high-pressure polymorphism of cristobalite-like Be(OH)2

  • Hannah Shelton
  • Madison C. Barkley
  • Robert T. Downs
  • Ronald Miletich
  • Przemyslaw Dera
Original Paper


Three isotypic crystals, SiO2 (α-cristobalite), ε-Zn(OH)2 (wülfingite), and Be(OH)2 (β-behoite), with topologically identical frameworks of corner-connected tetrahedra, undergo displacive compression-driven phase transitions at similar pressures (1.5–2.0 GPa), but each transition is characterized by a different mechanism resulting in different structural modifications. In this study, we report the crystal structure of the high-pressure γ-phase of beryllium hydroxide and compare it with the high-pressure structures of the other two minerals. In Be(OH)2, the transition from the ambient β-behoite phase with the orthorhombic space group P212121 and ambient unit cell parameters a = 4.5403(4) Å, b = 4.6253(5) Å, c = 7.0599(7) Å, to the high-pressure orthorhombic γ-polymorph with space group Fdd2 and unit cell parameters (at 5.3(1) GPa) a = 5.738(2) Å, b = 6.260(3) Å, c = 7.200(4) Å takes place between 1.7 and 3.6 GPa. This transition is essentially second order, is accompanied by a negligible volume discontinuity, and exhibits both displacive and reversible character. The mechanism of the phase transition results in a change to the hydrogen bond connectivities and rotation of the BeO4 tetrahedra.


Behoite Beryllium hydroxide Cristobalite Hydrogen bonding High pressure Phase transitions SiO2 



All of the experiments described in this paper were conducted by M. Barkley and were part of her Ph.D. thesis research, and the main conclusion of this work was described therein. H. Shelton conducted all structure refinements and comparative analysis. All authors contributed to writing the manuscript. The authors gratefully acknowledge the support of this study from the Chevron Corporation, BP p. l. c., the University of Arizona Galileo Circle, the Tucson Gem and Mineral Society, and Carnegie-DOE Alliance Center under cooperative agreement DE FC52-08NA28554. Development of the GSE_ADA software used for data analysis is supported by NSF Grant EAR1440005. We also thank Prof. M. Rieder and two anonymous reviewers for their keen editing and constructive criticism of this work. Portions of this project were performed at GeoSoilEnviroCARS (Sector 13), Advanced Photon Source (APS), Argonne National Laboratory. GeoSoilEnviroCARS is supported by the National Science Foundation—Earth Sciences (EAR-0622171) and Department of Energy—Geosciences (DE-FG02-94ER14466). Use of the Advanced Photon Source was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflict of interest.


  1. Bear IJ, Turnbull AG (1965) Heats of formation of beryllium compounds. J Phys Chem 69:2828–2833CrossRefGoogle Scholar
  2. Bindi L, Nishi M, Tsuchiya J, Irifune T (2014) Crystal chemistry of dense hydrous magnesium silicates: the structure of phase H, MgSiH2O4, synthesized at 45 GPa and 1000°C. Am Mineral 99:1802–1805CrossRefGoogle Scholar
  3. Brandenburg K, Putz H (2009) Endeavour. Crystal Impact GbR, Bonn, GermanyGoogle Scholar
  4. Brown PL, Ekberg C (2016) Alkaline earth metals: beryllium, vol 1. Wiley-VCH, WeinheimGoogle Scholar
  5. Dera P (2007) GSE_ADA data analysis program for monochromatic single crystal diffraction with area detector. GSECARS, ChicagoGoogle Scholar
  6. Dera P, Lazarz JD, Prakapenka VB, Barkley M, Downs RT (2011) New insights into the high-pressure polymorphism of SiO2 cristobalite. Phys Chem Minerals 38:527–529CrossRefGoogle Scholar
  7. Dera P, Zhuravlev K, Prakapenka V, Rivers ML, Finkelstein GJ, Grubor-Urosevic O, Tschauner O, Clark SM, Downs RT (2013) High pressure single-crystal micro X-ray diffraction analysis with GSE_ADA/RSV software. High Press Res 33:466–484CrossRefGoogle Scholar
  8. Dolomanov OV, Bourhis LJ, Howard RJ, Puschmann JAK (2009) OLEX2: a complete structure solution, refinement and analysis program. J Appl Crystallogr 42:339–341CrossRefGoogle Scholar
  9. Dove MT (1997) Theory of displacive phase transitions in minerals. Am Mineral 82:213–244. doi: 10.2138/am-1997-3-401 CrossRefGoogle Scholar
  10. Dove MT, Craig MS, Keen DA, Marshall WG, Redfern SAT, Trachenko KO, Tucker MG (2000) Crystal structure of the high-pressure monoclinic phase-II of cristobalite, SiO2. Mineral Mag 64:569–576CrossRefGoogle Scholar
  11. Downs RT, Hall-Wallace M (2003) XtalDraw. Am Mineral 88:247–250CrossRefGoogle Scholar
  12. Downs RT, Palmer DC (1994) The pressure behavior of α-cristobalite. Am Mineral 79:9–14Google Scholar
  13. Friedrich A, Kunz M, Miletich R (2002) High-pressure behavior of Ba(OH)2: phase transitions and bulk modulus. Phys Rev B 66:1–8CrossRefGoogle Scholar
  14. Gilli G, Gilli P (2009) The nature of the hydrogen bond: outline of a comprehensive hydrogen bond theory. International union of crystallography monographs on crystallography, vol 23. Oxford University Press, UKGoogle Scholar
  15. Goncharov AF, Struzhkin VV, Somayazulu MS, Hemley RJ, Mao HK (1996) Compression of ice to 210 gigapascals: infrared evidence for a symmetric hydrogen-bonded phase. Science 273:218–220CrossRefGoogle Scholar
  16. Grabowski S (ed) (2006) Hydrogen bonding—new insights. Challenges and advanced in computational chemistry and physics, vol 3. Springer, The NetherlandsGoogle Scholar
  17. Haines J, Cambon O (2004) The effects of pressure, temperature, and composition on the crystal structures of α-quartz homeotypes. Z Kristallogr 219:314–323Google Scholar
  18. Haines J, Leger JM, Gorelli F, Hanfland M (2001) Crystalline post-quartz phase in silica at high pressure. Phys Rev Lett 87:155503CrossRefGoogle Scholar
  19. Hatch DM, Ghose S, Bjorkstam JL (1994) The α-β phase transition in AlPO4 cristobalite: symmetry analysis, domain structure and transition dynamics. Phys Chem Miner 21:67–77. doi: 10.1007/BF00205217 CrossRefGoogle Scholar
  20. Hazen RM, Downs RT (2000) High-temperature and high-pressure crystal chemistry. In: Hazen RM, Downs RT (eds) Reviews in mineralogy and geochemistry, vol 41. Mineralogical Society of America, Washington, DCGoogle Scholar
  21. Hushur A, Manghnani MH, Smyth JR, Williams Q, Hellebrand E, Lonappan D, Ye Y, Dera P, Frost DJ (2011) Hydrogen bond symmetrization and equation of state of phase D. J Geophys Res Solid Earth. doi: 10.1029/2010JB008087
  22. Jacobsen SD (2006) Effect of water on the equation of state of nominally anhydrous minerals. In: Reviews in mineralogy and geochemistry, vol 62. Mineralogical Society of America, pp 321–342Google Scholar
  23. Koch-Müller M, Dera P, Fei Y, Reno B, Sobolev N, Hauri E, Wysoczanski R (2003) OH in synthetic and natural coesite. Am Mineral 88:1436–1445CrossRefGoogle Scholar
  24. Kusaba K, Kikegawa T (2008) Phase transitions of Zn(OH)2 under high pressure and high temperature. Solid State Commun 148:382–385CrossRefGoogle Scholar
  25. Kusaba K, Yagi T, Yamaura J, Miyajima N, Kikegawa T (2007) Single-crystal to single-crystal phase transition with a large deformation in Zn(OH)2 under high-pressure. Chem Phys Lett 437:61–65CrossRefGoogle Scholar
  26. Kusaba K, Yagi T, Yamaura J, Gotou H, Kikegawa T (2010) Structural consideration of phase transitions in Zn(OH)2 under high pressure. J Phys Conf Ser 2015:012001CrossRefGoogle Scholar
  27. Lakshtanov DL, Sinogeikin SV, Litasov KD, Prakapenka VB, Hellwig H, Wang J, Sanches-Valle C, Perrillat J-P, Chen B, Somayazulu M (2007) The post-stishovite phase transition in hydrous alumina-bearing SiO2 in the lower mantle of the earth. Proc Natl Acad Sci 104:13588–13590CrossRefGoogle Scholar
  28. Lathe C, Koch-Müller M, Wirth R, Van Westrenen W, Mueller H-J, Schilling F, Lauterjung J (2005) The influence of OH in coesite on the kinetics of the coesite-quartz phase transition. Am Mineral 90:36–43. doi: 10.2138/am.2005.1662 CrossRefGoogle Scholar
  29. Lin J, Gregoryanz E, Struzhkin V, Somayazulu M, Mao H, Hemley RJ (2005) Melting behavior of H2O at high pressures and temperatures. Geophys Res Lett 32:1–4Google Scholar
  30. Liu Z, Lager GA, Hemley RJ, Ross NL (2003) Synchrotron infrared spectroscopy of OH-chondrodite and OH-clinohumite at high pressure. Am Mineral 88:1412–1415CrossRefGoogle Scholar
  31. Lutz HD, Jung C, Mortel R, Jacobs H, Stahl R (1998a) Hydrogen bonding in solid hydroxides with strongly polarizing metal ions, β-Be(OH)2 and ε–Zn(OH)2. Spectrochim Acta Part A 54:893–901CrossRefGoogle Scholar
  32. Lutz HD, Jung C, Mörtel R, Jacobs H, Stahl R (1998b) Hydrogen bonding in solid hydroxides with strongly polarising metal ions, β-Be(OH)2 and ε-Zn(OH)2. Spectrochim Acta Part A Mol Biomol Spectrosc 54:893–901. doi: 10.1016/S1386-1425(98)00017-1 CrossRefGoogle Scholar
  33. Mao HK, Xu J, Bell PM (1986) Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. J Geophys Res 91:4673–4676CrossRefGoogle Scholar
  34. Marques M, Acklands GJ, Loveday JS (2009) Nature and stability of ice X. High Press Res 29:208–211CrossRefGoogle Scholar
  35. Miletich R (2006) High-pressure polymorphism, phase transition and elastic behaviour of behoite, Be(OH)2. Paper presented at the 19th General Meeting of the International Mineralogical Association, Kobe, JapanGoogle Scholar
  36. Mitra S (2004) Developments in geochemistry. In: High pressure geochemistry and mineral physics, 1st edn. Basics for planetology and geo-material science, vol 9. Elsevier Science, New York, pp 67–70, 840–847Google Scholar
  37. Müller U (2006) Inorganic Structural Chemistry, 2nd edn. Wiley, New YorkGoogle Scholar
  38. Nadezhina TN, Pushcharovskii DY, Rastsvetaeva RK, Voloshin AV, Burshtein IF (1989) Crystal structure of a new natural form of Be(OH)2. Dokl Akad Nauk SSSR 305:95–98Google Scholar
  39. Palmer DC, Finger LW (1994) Pressure-induced phase transition in cristobalite: an X-ray powder diffraction study to 4.4 GPa. Am Mineral 79:1–8Google Scholar
  40. Pletnev RN, Kiiko VS, Makurin YN, Nepryakhin AA (2005) Proton magnetic resonance and the state of hydrogen in beryllium hydroxide. Refract Ind Ceram 46:273–275. doi: 10.1007/s11148-006-0023-z CrossRefGoogle Scholar
  41. Prewitt CT, Downs RT (1998) Ultrahigh-pressure mineralogy: physics and chemistry of the earth’s deep interior. In: Hemley RJ (ed) Reviews in mineralogy, vol 37. Mineralogical Society of America, Washington, DCGoogle Scholar
  42. Schmidt MW, Finger LW, Angel RJ, Dinnebier RE (1998) Synthesis, crystal structure, and phase relations of AlSiO3OH, a high-pressure hydrous phase. Am Mineral 83:881–888CrossRefGoogle Scholar
  43. Sheldrick G (2008) A short history of SHELX. Acta Crystallogr A A64:112–122CrossRefGoogle Scholar
  44. Simonov MA, Egorov-Tismenko YK, Belov NV (1975) Utochnennaya kristallicheskaya struktura chkalovita Na2Be[Si2O6]. Dokl Akad Nauk SSSR 225:1319–1322Google Scholar
  45. Spektor K, Nylen J, Stoyanov E, Navrotsky A, Hervig RL, Leinenweber K, Holland GP, Häussermann U (2011) Ultrahydrous stishovite from high-pressure hydrothermal treatment of SiO2. Proc Natl Acad Sci USA 108:20918–20922. doi: 10.1073/pnas.1117152108 CrossRefGoogle Scholar
  46. Stahl R, Jung C, Lutz HD, Kockelmann W, Jacobs H (1998) Kristallstrukturen und Wasserstoffbrueckenbindungen bei β-Be(OH)2 und ε-Zn(OH)2. Z Anorg Chem 624:1130–1136CrossRefGoogle Scholar
  47. Tolédano P, Dmitriev V (1996) Phenomenological theory of first-order phase transitions. In: Reconstructive phase transitions: in crystals and quasicrystals. World Scientific, Singapore, pp 1–142. doi: 10.1142/9789812830715_0001
  48. Tsuchiya J (2013) First principles prediction of a new high-pressure phase of dense hydrous magnesium silicates in the lower mantle. Geophys Res Lett 40:4570–4573CrossRefGoogle Scholar
  49. Tsuchiya J, Tsuchiya T, Tsuneyuki S (2005) First-principles study of hydrogen bond symmetrization of phase D under high pressure. Am Mineral 90:44–49. doi: 10.2138/am.2005.1628 CrossRefGoogle Scholar
  50. Wicks J, Duffy TS (2015) Crystal structures of minerals in the lower mantle. AGU Books, pp 8–9Google Scholar
  51. Yoshino T, Shimojuku A, Li D (2013) Electrical conductivity of stishovite as a function of water content. Phys Earth Planet Inter 227:48–54CrossRefGoogle Scholar
  52. Zhang G-Q, Xu D-P, Song G-X, Xue Y-F, Li L, Wang D-Y, Su W-H (2009) Effect of Si–OH on the transformation of amorphous SiO2 to coesite. J Alloy Compd 476:L4–L7CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Hannah Shelton
    • 1
  • Madison C. Barkley
    • 2
    • 3
  • Robert T. Downs
    • 3
  • Ronald Miletich
    • 4
  • Przemyslaw Dera
    • 1
  1. 1.Hawaii Institute of Geophysics and Planetology and Department of Geology and GeophysicsUniversity of Hawaii at ManoaHonoluluUSA
  2. 2.Arizona Historical SocietyPhoenixUSA
  3. 3.Department of GeosciencesUniversity of ArizonaTucsonUSA
  4. 4.Institut für Mineralogie und KristallographieUniversität WienViennaAustria

Personalised recommendations