Physics and Chemistry of Minerals

, Volume 43, Issue 7, pp 503–514 | Cite as

A new mineral species ferricoronadite, Pb[Mn6 4+(Fe3+, Mn3+)2]O16: mineralogical characterization, crystal chemistry and physical properties

  • Nikita V. Chukanov
  • Sergey M. Aksenov
  • Simeon Jančev
  • Igor V. Pekov
  • Jörg Göttlicher
  • Yury S. Polekhovsky
  • Vyacheslav S. Rusakov
  • Yuliya V. Nelyubina
  • Konstantin V. Van
Original Paper


A new mineral ferricoronadite with the simplified formula Pb(Mn6 4+Fe2 3+)O16 was discovered in the orogenetic zone related to the “Mixed Series” metamorphic complex near the Nežilovo village, Pelagonian massif, Republic of Macedonia. Associated minerals are franklinite, gahnite, hetaerolite, roméite, almeidaite, Mn-analogue of plumboferrite, zincohögbomite analogue with Fe3+ > Al, zincochromite, Zn-bearing talc, Zn-bearing muscovite, baryte, quartz and zircon. Ferricoronadite is a late hydrothermal mineral forming veinlets up to 8 mm thick in granular aggregate predominantly composed by zinc-dominant spinels. The new mineral is opaque, black, with brownish black streak. The luster is strong submetallic to metallic. The micro-indentation hardness is 819 kg/mm2. Distinct cleavage is observed on (100). Ferricoronadite is brittle, with uneven fracture. The density calculated from the empirical formula is 5.538 g/cm3. In reflected light, ferricoronadite is light gray. The reflectance values [R max/R min, % (λ, nm)] are: 28.7/27.8 (470), 27.6/26.6 (546), 27.2/26.1 (589), 26.5/25.5 (650). The IR spectrum shows the absence of H2O and OH groups. According to the Mössbauer spectrum, all iron is trivalent. The Mn K-edge XANES spectroscopy shows that Mn is predominantly tetravalent, with subordinate Mn3+. The chemical composition is (wt%; electron microprobe, Mn apportioned between MnO2 and Mn2O3 based on the charge-balance requirement): BaO 5.16, PbO 24.50, ZnO 0.33, Al2O3 0.50, Mn2O3 9.90, Fe2O3 11.45, TiO2 4.19, MnO2 44.81, total 100.84. The empirical formula based on 8 cations Mn + Fe + Ti + Al + Zn pfu is Pb1.03Ba0.32(Mn 4.85 4+ Fe 1.35 3+ Mn 1.18 3+ Ti0.49Al0.09Zn0.04)Σ8.00O16. The crystal structure was determined using single-crystal X-ray diffraction data. The new mineral is tetragonal, space group I4/m, a = 9.9043(7), c = 2.8986(9) Å, V = 284.34(9) Å3, Z = 1. In ferricoronadite, double chains of edge-sharing (Mn, Fe, Ti)-centered octahedra are connected via common vertices to form a pseudo-framework with tunnels containing large cations Pb and Ba. The strongest lines of the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 3.497 (33) (220), 3.128 (100) (−130, 130), 2.424 (27) (−121, 121), 2.214 (23) (240, −240), 2.178 (17) (031), 1.850 (15) (141, −141), 1.651 (16) (060), 1.554 (18) (−251, 251). Ferricoronadite is named as an analogue of coronadite Pb(Mn6 4+Mn2 3+)O16 with the major charge-compensating octahedral cation Fe3+ instead of Mn3+.


New mineral Ferricoronadite Hollandite supergroup Crystal structure Mössbauer spectroscopy XANES spectroscopy IR spectroscopy Reflectance spectrum Nežilovo Pelagonian massif 



This work was financially supported by the Russian Foundation for Basic Research (Grants Nos. 14-05-00276-a, 16-35-60101-mol-a-dk and 16-03-00691a).


  1. Amoroso J, Marra J, Conradson SD, Tang M, Brinkman K (2015) Melt processed single phase hollandite waste forms for nuclear waste immobilization: Ba1.0Cs0.3 A 2.3Ti5.7O16; A = Cr, Fe, Al. J Alloys Compds 584:590–599CrossRefGoogle Scholar
  2. Aubin-Chevaldonnet V, Caurant D, Gourier D, Charpentier T, Esnouf S (2009) Synthesis and stability under electron irradiation of a hollandite structure-type Ba1.16Al2.32Ti5.68O16 ceramic envisaged for radioactive cesium immobilization. C R Chim 12:1079–1092CrossRefGoogle Scholar
  3. Barić Lj (1960) Piemontit, gahnit und rutil aus dem Fundort der Blei und Zincerze bei dem Dorfe Nezilovo in Mazedonien. Glasnik Prirodnjackogo Muzeja Beograd Ser A 13:200–204Google Scholar
  4. Barić Lj, Ivanov T (1960) Mineralvergesellschaftung in der Umgebung des Dorfes Nežilovo am Jakupica-Gebirge in Mazedonien. Bull Sci (Zagreb) 5:2Google Scholar
  5. Biagioni C, Orlandi P, Pasero M (2009) Ankangite from the Monte Arsiccio mine (Apuan Alps, Tuscany, Italy): occurrence, crystal structure, and classification problems in cryptomelane group minerals. Period Mineral 78:3–11Google Scholar
  6. Biagioni C, Capalbo C, Pasero M (2013) Nomenclature tunings in the hollandite supergroup. Eur J Mineral 25:85–90CrossRefGoogle Scholar
  7. Biagioni C, Capalbo C, Lezzerini M, Pasero M (2014) Ferrihollandite, BaMn6 4+Fe2 3+O16, from Apuan Alps, Tuscany, Italy: description and crystal structure. Eur J Mineral 26:171–178CrossRefGoogle Scholar
  8. Bolotina N, Dmitrieva MT, Rastsvetaeva RK (1992) Modulated structures of a new natural representative of the hollandite series. Sov Phys Crystallogr 37:311–315Google Scholar
  9. Brandenburg K, Putz H (2005) DIAMOND version 3. Crystal Impact GbR, BonnGoogle Scholar
  10. Brown ID, Altermatt D (1985) Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database. Acta Cryst B 41:244–247CrossRefGoogle Scholar
  11. Brown ID, Shannon RD (1973) Empirical bond strength—bond lengths curves for oxides. Acta Cryst A 29:266–282CrossRefGoogle Scholar
  12. Bruker (2009) APEX2 and SAINT. Bruker AXS Inc, Madison, Wisconsin, USAGoogle Scholar
  13. Buykx WL, Hawkins K, Levins DM, Mitamura H, Smart RS, Stevens GT, Watson KG, Weedon D, White TJ (1988) Titanate ceramics for the immobilization of sodium-bearing high-level nuclear waste. J Am Ceram Soc 71(8):678–688CrossRefGoogle Scholar
  14. Chukanov NV, Jančev S, Pekov IV (2015) The association of oxygen-bearing minerals of chalcophile elements in the orogenetic zone related to the “Mixed Series” complex near Nežilovo, Republic of Macedonia. Maced J Chem Chem Eng 34(1):115–124CrossRefGoogle Scholar
  15. Costa GCC, Xu HW, Navrotsky A (2013) Thermochemistry of barium hollandites. J Am Ceram Soc 63:1554–1561CrossRefGoogle Scholar
  16. Dörsam G, Liebscher A, Wunder B, Franz G, Gottschalk M (2011) Synthesis of Pb-zoisite and Pb-lawsonite. N Jbhrb Mineral Abh 188(2):99–110CrossRefGoogle Scholar
  17. Frondel C, Heinrich EW (1942) New data on hetaerolite, hydrohetaerolite, coronadite, and hollandite. Am Mineral 27:48–56Google Scholar
  18. Gatehouse BM, Jones GC, Pring A, Symes RF (1986) The chemistry and structure of redledgeite. Mineral Mag 50:709–715CrossRefGoogle Scholar
  19. Ibers JA, Hamilton WC (eds) (1974) International tables for X-ray crystallography, vol IV. The Kynoch Press, BirminghamGoogle Scholar
  20. Kesson SE (1983) The immobilization of cesium in synrock hollandite. Radioact Waste Manag Environ Restor 4(1):53–72Google Scholar
  21. Kijima N, Sakao M, Tanuma Y, Kataoka K, Igarashi K, Akimoto J (2014) Synthesis, crystal structure, and electrochemical properties of hollandite-type KxTi1−yMnyO2. Solid State Ionics 262:14–17CrossRefGoogle Scholar
  22. Krivovichev SV, Brown ID (2001) Are the compressive effects of encapsulation an artifact of the bond valence parameters. Z Kristallogr 216:245–247Google Scholar
  23. Larrégola SA, Alonso JA, Algueró M, Jiménez R, Suard E, Porcher F, Pedregosa JC (2010) Effect of the Pb2+ lone electron pair in the structure and properties of the double perovskites Pb2Sc(Ti0.5Te0.5)O6 and Pb2Sc(Sc0.33Te0.66)O6: relaxor state due to intrinsic partial disorder. Dalton Trans 39:5159–5165CrossRefGoogle Scholar
  24. Liebau F (2003) Ordered microporous and mesoporous materials with inorganic hosts: definitions of terms, formula notation and systematic classification. Microporous Mesoporous Mater 58:15–72CrossRefGoogle Scholar
  25. Matsnev ME, Rusakov VS (2012) SpectrRelax: an application for Mössbauer spectra modeling and fitting. In: Mössbauer spectroscopy in materials science: proceedings of the AIP conference, vol 1489, pp 178–185Google Scholar
  26. McCammon C, Mitchell RH, Chakhmouradian AR (1999) Mössbauer spectra of priderite and synthetic iron-bearing hollandite. Can Mineral 37:991–995Google Scholar
  27. McCusker L (2005) IUPAC nomenclature for ordered microporous and mesoporous materials and its application to non-zeolite microporous mineral phases. Rev Mineral Geochem 57:1–16CrossRefGoogle Scholar
  28. McCusker LB, Liebau F, Engelhardt G (2003) Nomenclature of structural and compositional characteristics of ordered microporous and mesoporous materials with inorganic hosts. Microporous Mesoporous Mater 58:3–13CrossRefGoogle Scholar
  29. Meisser N, Perseil E-A, Brugger J, Chiappero P-J (1999) Strontiomelane, SrMn6 4+Mn2 3+O16, a new mineral of the cryptomelane group from St. Marcel-Praborna, Aosta Valley, Italy. Can Mineral 37:673–678Google Scholar
  30. Miura H (1986) The crystal structure of hollandite. Mineral J 13:119–129CrossRefGoogle Scholar
  31. Moore PB (1988) The joesmithite enigma: note on the 6 s2 Pb2+ lone pair. Am Mineral 73:843–844Google Scholar
  32. Norrish K (1951) Priderite, a new mineral from the leucite-lamproites of the west Kimberley area, Western Australia. Mineral Mag 29:496–501CrossRefGoogle Scholar
  33. Ödman OH (1950) Manganese mineralization in the Ultevis district, Jokkmokk, North Sweden. Part 2: mineralogical notes. Sveriges Geologiska Undersökning Serie C 516:1–27Google Scholar
  34. Pasero M (2005) A short outline of the tunnel oxides. Rev Mineral Geochem 57:291–305CrossRefGoogle Scholar
  35. Perseil EA, Pinet M (1976) Contribution à la connaissance des romanéchites et des cryptoméelanes—coronadites—hollandites. Traits essentiels et paragenèses. Contrib Mineral Petrol 55:191–204CrossRefGoogle Scholar
  36. Petřiček V, Dušek M, Palatinus L (2006) Jana 2006. Structure determination software programs. Institute of Physics, PrahaGoogle Scholar
  37. Post JE, Bish DL (1989) Rietveld refinement of the coronadite structure. Am Mineral 74:913–917Google Scholar
  38. Post JE, von Dreele RB, Buseck PR (1982) Symmetry and cation displacements in hollandites: structure refinements of hollandite, cryptomelane and priderite. Acta Cryst B 38:1056–1065CrossRefGoogle Scholar
  39. Potter RM, Rossman GR (1979) The tetravalent manganese oxides: identification, hydration, and structural relationships by infrared spectroscopy. Am Mineral 64:1199–1218Google Scholar
  40. Robinson K, Gibbs GV, Ribbe PH (1971) Quadratic elongation: a quantitative measure of distortion in coordination polyhedra. Science 172:567–570CrossRefGoogle Scholar
  41. Strobel P, Vicat J, Qui DT (1984) Thermal and physical properties of hollandite-type K1.3Mn8O16 and (K, H3O) xMn8O16. J Solid State Chem 55:67–73CrossRefGoogle Scholar
  42. Wang Z-M, Tezuka S, Kanoh H (2001) Characterization of the structural and surface properties of a synthesized hydrous hollandite by gaseous molecular adsorption. Chem Mater 13:530–537CrossRefGoogle Scholar
  43. Xu H, Wu L, Zhu J, Navrotsky A (2015) Synthesis, characterization and thermochemistry of Cs-, Rb- and Sr-substituted barium aluminium titanate hollandites. J Nucl Mater 459:70–76CrossRefGoogle Scholar
  44. Yin H, Dai X, Zhu M, Li F, Feng X, Liu F (2015) Fe-doped cryptomelane synthesized by refluxing at atmosphere: structure, properties and photocatalytic degradation of phenol. J Hasard Mater 296:221–229CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Nikita V. Chukanov
    • 1
  • Sergey M. Aksenov
    • 2
    • 3
  • Simeon Jančev
    • 4
  • Igor V. Pekov
    • 5
  • Jörg Göttlicher
    • 6
  • Yury S. Polekhovsky
    • 2
  • Vyacheslav S. Rusakov
    • 7
  • Yuliya V. Nelyubina
    • 3
  • Konstantin V. Van
    • 8
  1. 1.Institute of Problems of Chemical PhysicsRussian Academy of SciencesChernogolovkaRussia
  2. 2.Faculty of GeologySt Petersburg State UniversitySt PetersburgRussia
  3. 3.Nesmeyanov Institute of Organoelement CompoundsRussian Academy of SciencesMoscowRussia
  4. 4.Faculty of Technology and MetallurgySaints Cyril and Methodius UniversitySkopjeMacedonia
  5. 5.Faculty of GeologyMoscow State UniversityMoscowRussia
  6. 6.ANKA Synchrotron Radiation FacilityKarlsruhe Institute of TechnologyEggenstein-LeopoldshafenGermany
  7. 7.Faculty of PhysicsMoscow State UniversityMoscowRussia
  8. 8.Institute of Experimental MineralogyRussian Academy of SciencesChernogolovkaRussia

Personalised recommendations