Physics and Chemistry of Minerals

, Volume 43, Issue 6, pp 447–458 | Cite as

Thermoelastic properties of chromium oxide Cr2O3 (eskolaite) at high pressures and temperatures

  • Anna M. Dymshits
  • Peter I. Dorogokupets
  • Igor S. Sharygin
  • Konstantin D. Litasov
  • Anton Shatskiy
  • Sergey V. Rashchenko
  • Eiji Ohtani
  • Akio Suzuki
  • Yuji Higo
Original Paper

Abstract

A new synchrotron X-ray diffraction study of chromium oxide Cr2O3 (eskolaite) with the corundum-type structure has been carried out in a Kawai-type multi-anvil apparatus to pressure of 15 GPa and temperatures of 1873 K. Fitting the Birch–Murnaghan equation of state (EoS) with the present data up to 15 GPa yielded: bulk modulus (K0,T0), 206 ± 4 GPa; its pressure derivative K0,T, 4.4 ± 0.8; (∂K0,T/T) = ‒0.037 ± 0.006 GPa K‒1; a = 2.98 ± 0.14 × 10−5 K−1 and b = 0.47 ± 0.28 × 10‒8 K‒2, where α0,T = a + bT is the volumetric thermal expansion coefficient. The thermal expansion of Cr2O3 was additionally measured at the high-temperature powder diffraction experiment at ambient pressure and α0,T0 was determined to be 2.95 × 10−5 K−1. The results indicate that coefficient of the thermal expansion calculated from the EoS appeared to be high-precision because it is consistent with the data obtained at 1 atm. However, our results contradict α0 value suggested by Rigby et al. (Brit Ceram Trans J 45:137–148, 1946) widely used in many physical and geological databases. Fitting the Mie–Grüneisen–Debye EoS with the present ambient and high-pressure data yielded the following parameters: K0,T0 = 205 ± 3 GPa, K0,T  = 4.0, Grüneisen parameter (γ0) = 1.42 ± 0.80, q = 1.82 ± 0.56. The thermoelastic parameters indicate that Cr2O3 undergoes near isotropic compression at room and high temperatures up to 15 GPa. Cr2O3 is shown to be stable in this pressure range and adopts the corundum-type structure. Using obtained thermoelastic parameters, we calculated the reaction boundary of knorringite formation from enstatite and eskolaite. The Clapeyron slope (with \({\text{d}}P/{\text{d}}T = - 0.014\) GPa/K) was found to be consistent with experimental data.

Keywords

Chromium oxide Eskolaite Thermal equation of state Experiment High pressure Thermal expansion Knorringite formation 

Supplementary material

269_2016_808_MOESM1_ESM.docx (23 kb)
Supplementary material 1 (DOCX 22 kb)

References

  1. Angel RJ (2000) Equations of state. Rev Miner Geochem 41(1):35–59. doi:10.2138/rmg.2000.41.2 CrossRefGoogle Scholar
  2. Angel RJ, Alvaro M, Gonzalez-Platas J (2014) EosFit7c and a Fortran module (library) for equation of state calculations. Z Kristallogr 229(5):405–419Google Scholar
  3. Angel RJ, Alvaro M, Nestola F, Mazzucchelli ML (2015) Diamond thermoelastic properties and implications for determining the pressure of formation of diamond-inclusion systems. Russ Geol Geophys 56(1–2):211–220. doi:10.1016/j.rgg.2015.01.014 CrossRefGoogle Scholar
  4. Bataleva YV, Pal’yanov YN, Sokol AG, Borzdov YM, Sobolev NV (2012) Conditions of formation of Cr-pyrope and escolaite during mantle metasomatism: experimental modeling. Dokl Earth Sci 442:76–80. doi:10.1134/S1028334X12010047 CrossRefGoogle Scholar
  5. Bridgman PW (1937) Polymorphic transitions of 35 Substances to 50,000 Kg/Cm2. Proc Am Acad Arts Sci 72:45–136CrossRefGoogle Scholar
  6. Chevalier S, Bonnet G, Larpin J (2000) Metal-organic chemical vapor deposition of Cr2O3 and Nd2O3 coatings. Oxide growth kinetics and characterization. Appl Surf Sci 167(3):125–133. doi:10.1016/S0169-4332(00)00286-5 CrossRefGoogle Scholar
  7. Cruz-Espinoza A, Ibarra-Galván V, López-Valdivieso A, González-González J (2012) Synthesis of microporous eskolaite from Cr(VI) using activated carbon as a reductant and template. J Colloid Interf Sci 374(1):321–324. doi:10.1016/j.jcis.2012.01.059 CrossRefGoogle Scholar
  8. Dera P, Lavina B, Meng Y, Prakapenka VB (2011) Structural and electronic evolution of Cr2O3 on compression to 55 GPa. J Solid State Chem 184(11):3040–3049. doi:10.1016/j.jssc.2011.09.021 CrossRefGoogle Scholar
  9. Dernier P, Marezio M (1970) Crystal structure of the low-temperature antiferromagnetic phase of V2O3. Phys Rev B 2(9):3771. doi:10.1103/PhysRevB.2.3771 CrossRefGoogle Scholar
  10. Dobin AY, Duan W, Wentzcovitch RM (2000) Magnetostructural effects and phase transition in Cr2O3 under pressure. Phys Rev B 62(18):11997. doi:10.1103/PhysRevB.62.11997 CrossRefGoogle Scholar
  11. Dorogokupets PI, Dewaele A (2007) Equations of state of MgO, Au, Pt, NaCl-B1, and NaCl-B2: internally consistent high-temperature pressure scales. High Press Res 27(4):431–446. doi:10.1080/08957950701659700 CrossRefGoogle Scholar
  12. Dorogokupets PI, Dymshits AM, Sokolova TS, Danilov BS, Litasov KD (2015) The equations of state of forsterite, wadsleyite, ringwoodite, akimotoite, MgSiO3-perovskite, and postperovskite and phase diagram for the Mg2SiO4 system at pressures of up to 130 GPa. Russ Geol Geophys 56(1–2):172–189. doi:10.1016/j.rgg.2015.01.011 CrossRefGoogle Scholar
  13. Dymshits AM, Litasov KD, Sharygin IS, Shatskiy A, Ohtani E, Suzuki A, Funakoshi K (2014a) Thermal equation of state of majoritic knorringite and its significance for continental upper mantle. J Geoph Res Solid Earth 119(11):8034–8046. doi:10.1002/2014jb011194 CrossRefGoogle Scholar
  14. Dymshits AM, Litasov KD, Shatskiy A, Sharygin IS, Ohtani E, Suzuki A, Pokhilenko NP, Funakoshi K (2014b) PVT equation of state of Na-majorite to 21 GPa and 1673 K. Phys Earth Planet Inter 227:68–75. doi:10.1016/j.pepi.2013.11.005 CrossRefGoogle Scholar
  15. Finger LW, Hazen RM (1980) Crystal structure and isothermal compression of Fe2O3, Cr2O3, and V2O3 to 50 kbars. J Appl Phys 51(10):5362–5367. doi:10.1063/1.327451 CrossRefGoogle Scholar
  16. Gurevich V, Kuskov O, Smirnova N, Gavrichev K, Markin A (2009) Thermodynamic functions of eskolaite Cr2O3 at 0–1800 K. Geochem Int 47(12):1170–1179. doi:10.1134/S0016702909120027 CrossRefGoogle Scholar
  17. Hill AH, Harrison A, Dickinson C, Zhou W, Kockelmann W (2010) Crystallographic and magnetic studies of mesoporous eskolaite, Cr2O3. Micropor Mesopor Mater 130(1):280–286. doi:10.1016/j.micromeso.2009.11.021 CrossRefGoogle Scholar
  18. Holland T, Powell R (2011) An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. J Metamorph Geol 29(3):333–383. doi:10.1111/j.1525-1314.2010.00923.x CrossRefGoogle Scholar
  19. Holland TJB, Redfern SAT (1997) Unit cell refinement from powder diffraction data: the use of regression diagnostics. Miner Mag 61(1):65–77. doi:10.1180/minmag.1997.061.404.07 CrossRefGoogle Scholar
  20. Hutchison MT, Nixon PH, Harley SL (2004) Corundum inclusions in diamonds—discriminatory criteria and a corundum compositional dataset. Lithos 77(1):273–286. doi:10.1016/j.lithos.2004.04.006 CrossRefGoogle Scholar
  21. Irifune T, Ohtani E, Kumazawa M (1982) Stability field of knorringite Mg3Cr2Si3O12 at high pressure and its implication to the occurrence of Cr-rich pyrope in the upper mantle. Phys Earth Planet Inter 27:263–272. doi:10.1016/0031-9201(82)90056-5 CrossRefGoogle Scholar
  22. Kantor A, Kantor I, Merlini M, Glazyrin K, Prescher C, Hanfland M, Dubrovinsky L (2012) High-pressure structural studies of eskolaite by means of single-crystal X-ray diffraction. Am Miner 97(10):1764–1770. doi:10.2138/am.2012.4103 CrossRefGoogle Scholar
  23. Klemme S (2004) The influence of Cr on the garnet–spinel transition in the Earth’s mantle: experiments in the system MgO–Cr2O3–SiO2 and thermodynamic modelling. Lithos 77(1):639–646. doi:10.1016/j.lithos.2004.03.017 CrossRefGoogle Scholar
  24. Klemme S, O’Neill HSC, Schnelle W, Gmelin E (2000) The heat capacity of MgCr2O4, FeCr2O4, and Cr2O3 at low temperatures and derived thermodynamic properties. Am Miner 85(11–12):1686–1693. doi:10.2138/am-2000-11-1212 CrossRefGoogle Scholar
  25. Lewis G, Drickamer H (1966) Effect of high pressure on the lattice parameters of Cr2O3 and α-Fe2O3. J Chem Phys 45(1):224–226. doi:10.1063/1.1727313 CrossRefGoogle Scholar
  26. Litasov KD, Ohtani E, Ghosh S, Nishihara Y, Suzuki A, Funakoshi K (2007) Thermal equation of state of superhydrous phase B to 27GPa and 1373K. Phys Earth Planet Inter 164(3):142–160. doi:10.1016/j.pepi.2007.06.003 CrossRefGoogle Scholar
  27. Logvinova AM, Wirth R, Sobolev NV, Seryotkin YV, Yefimova ES, Floss C, Taylor LA (2008) Eskolaite associated with diamond from the Udachnaya kimberlite pipe, Yakutia, Russia. Am Miner 93(4):685–690. doi:10.2138/am.2008.2670 CrossRefGoogle Scholar
  28. McDonough WF, Sun S-S (1995) The composition of the Earth. Chem Geol 120(3):223–253. doi:10.1016/0009-2541(94)00140-4 CrossRefGoogle Scholar
  29. Mougin J, Le Bihan T, Lucazeau G (2001) High-pressure study of Cr2O3 obtained by high-temperature oxidation by X-ray diffraction and Raman spectroscopy. J Phys Chem Solids 62(3):553–563. doi:10.1016/S0022-3697(00)00215-8 CrossRefGoogle Scholar
  30. Ovsyannikov SV, Dubrovinsky LS (2011) High-pressure high-temperature synthesis of Cr2O3 and Ga2O3. High Press Res 31(1):23–29. doi:10.1080/08957959.2010.520108 CrossRefGoogle Scholar
  31. Rekhi S, Dubrovinsky LS, Ahuja R, Saxena SK, Johansson B (2000) Experimental and theoretical investigations on eskolaite (Cr2O3) at high pressures. J Alloy Compd 302:16–20. doi:10.1016/S0925-8388(00)00613-7 CrossRefGoogle Scholar
  32. Rezvukhin DI, Malkovets VG, Sharygin IS, Kuzmin DV, Litasov KD, Gibsher AA, Pokhilenko NP, Sobolev NV (2016) Inclusions of Cr- and Cr–Nb-rutile in pyropes from the internatsionalnaya kimberlite pipe, Yakutia. Dokl Earth Sci 466(2): 173–176. doi:10.1134/S1028334X1602015X CrossRefGoogle Scholar
  33. Rigby G, Lovell G, Green A (1946) Some properties of the spinels associated with chrome ores. Brit Ceram Trans J 45:137–148Google Scholar
  34. Rollmann G, Rohrbach A, Entel P, Hafner J (2004) First-principles calculation of the structure and magnetic phases of hematite. Phys Rev B 69(16):165107. doi:10.1103/PhysRevB.69.165107 CrossRefGoogle Scholar
  35. Rubie D (1999) Characterising the sample environment in multianvil high-pressure experiments. Phase Transit 68(3):431–451. doi:10.1080/01411599908224526 CrossRefGoogle Scholar
  36. Sato Y, Akimoto S-I (1979) Hydrostatic compression of four corundum-type compounds: α-Al2O3, V2O3, Cr2O3, and α-Fe2O3. J Appl Phys 50(8):5285–5291. doi:10.1063/1.326625 CrossRefGoogle Scholar
  37. Schulze DJ, Flemming RL, Shepherd PH, Helmstaedt H (2014) Mantle-derived guyanaite in a Cr-omphacitite xenolith from Moses Rock diatreme, Utah. Am Miner 99(7):1277–1283. doi:10.2138/am.2014.4771 CrossRefGoogle Scholar
  38. Schumann B, Neumann H (1984) Thermal expansion of CaF2 from 298 to 1173 K. Cryst Res Technol 19(1):K13–K14. doi:10.1002/crat.2170190128 CrossRefGoogle Scholar
  39. Shim S-H, Duffy TS, Jeanloz R, Yoo C-S, Iota V (2004) Raman spectroscopy and x-ray diffraction of phase transitions in Cr2O3 to 61 GPa. Phys Rev B 69(14):144107. doi:10.1103/PhysRevB.69.144107 CrossRefGoogle Scholar
  40. Shinmei T, Tomioka N, Fujino K, Kuroda K, Irifune T (1999) In situ X-ray diffraction study of enstatite up to 12 GPa and 1473 K and equations of state. Am Miner. 84:1588–1594. doi:10.2138/am-1999-1012 CrossRefGoogle Scholar
  41. Skinner BJ (1966) Section 6: thermal expansion. Geol Soc Am Mem 97:75–96CrossRefGoogle Scholar
  42. Sobolev NV (1977) Deep-Seated Inclusions in Kimberlites and the Problem of the Composition of the Upper Mantle. American Geophysical Union, Washington D.CCrossRefGoogle Scholar
  43. Sobolev N, Kaminsky F, Griffin W, Yefimova E, Win T, Ryan C, Botkunov A (1997) Mineral inclusions in diamonds from the Sputnik kimberlite pipe, Yakutia. Lithos 39(3):135–157. doi:10.1016/S0024-4937(96)00022-9 CrossRefGoogle Scholar
  44. Sobolev NV, Logvinova AM, Zedgenizov DA, Seryotkin YV, Yefimova E, Floss C, Taylor L (2004) Mineral inclusions in microdiamonds and macrodiamonds from kimberlites of Yakutia: a comparative study. Lithos 77(1):225–242. doi:10.1016/j.lithos.2004.04.001 CrossRefGoogle Scholar
  45. Sobolev N, Logvinova A, Efimova E (2009) Syngenetic phlogopite inclusions in kimberlite-hosted diamonds: implications for role of volatiles in diamond formation. Russ Geol Geophys 50(12):1234–1248. doi:10.1016/j.rgg.2009.11.021 CrossRefGoogle Scholar
  46. Sokolova TS, Dorogokupets PI, Litasov KD (2013) Self-consistent pressure scales based on the equations of state for ruby, diamond, MgO, B2–NaCl, as well as Au, Pt, and other metals to 4 Mbar and 3000 K. Russ Geol Geophys 54(2):181–199. doi:10.1016/j.rgg.2013.01.005 CrossRefGoogle Scholar
  47. Stachel T, Harris JW (1997) Syngenetic inclusions in diamond from the Birim field (Ghana)–a deep peridotitic profile with a history of depletion and re-enrichment. Contrib Miner Petrol 127(4):336–352. doi:10.1007/s004100050284 CrossRefGoogle Scholar
  48. Suzuki A, Ohtani E, Terasaki H, Nishida K, Hayashi H, Sakamaki T, Shibazaki Y, Kikegawa T (2011) Pressure and temperature dependence of the viscosity of a NaAlSi2O6 melt. Phys Chem Miner 38(1):59–64. doi:10.1007/s00269-010-0381-4 CrossRefGoogle Scholar
  49. Turkin A, Sobolev N (2009) Pyrope–knorringite garnets: overview of experimental data and natural parageneses. Russ Geol Geophys 50(12):1169–1182. doi:10.1016/j.rgg.2009.11.015 CrossRefGoogle Scholar
  50. Turkin AI, Doroshev AM, Malinovsky YI (1983) Study of the phase composition of garnet-bearing associations of the system MgO–Al2O3–SiO2–Cr2O3 system at high temperatures and pressures [in Russian]. Silicate Systems Under High Pressure. Institute of Geology and Geophysics, NovosibirskGoogle Scholar
  51. Utsumi U, Funakoshi K, Urakawa S, Yamakata M, Tsuji K, Konishi H (1998) SPring-8 beamlines for high pressure science with multi-anvil apparatus. Rev High Press Sci Technol 7:1484–1486. doi:10.1088/0953-8984/14/44/322 CrossRefGoogle Scholar
  52. Vinet P, Ferrante J, Rose JH, Smith JR (1987) Compressibility of solids. J Geoph Res Solid Earth 92(B9):9319–9325. doi:10.1029/JB092iB09p09319 CrossRefGoogle Scholar
  53. Wang Y, Fang H, Zacherl CL, Mei Z, Shang S, Chen L-Q, Jablonski PD, Liu Z-K (2012) First-principles lattice dynamics, thermodynamics, and elasticity of Cr2O3. Surf Sci 606(17):1422–1425. doi:10.1016/j.susc.2012.05.006 CrossRefGoogle Scholar
  54. Weinberger MB, Tolbert SH, Kavner A (2008) Osmium metal studied under high pressure and nonhydrostatic stress. Phys Rev Lett 100(4):045506. doi:10.1103/PhysRevLett.100.045506 CrossRefGoogle Scholar
  55. Wessel C, Dronskowski R (2013) A first-principles study on chromium sesquioxide, Cr2O3. J Solid State Chem 199:149–153. doi:10.1016/j.jssc.2012.12.019 CrossRefGoogle Scholar
  56. Wijbrans C, Niehaus O, Rohrbach A, Pöttgen R, Klemme S (2014) Thermodynamic and magnetic properties of knorringite garnet (Mg3Cr2Si3O12) based on low-temperature calorimetry and magnetic susceptibility measurements. Phys Chem Miner 41(5):341–346. doi:10.1007/s00269-013-0653-x CrossRefGoogle Scholar
  57. Worlton T, Brugger R, Bennion R (1968) Pressure dependence of the Néel temperature of Cr2O3. J Phys Chem Solids 29(3):435–438. doi:10.1016/0022-3697(68)90120-0 CrossRefGoogle Scholar
  58. Xu B, Stokes H, Dong J (2010) First-principles calculation of kinetic barriers and metastability for the corundum-to-Rh2O3 (II) transition in Al2O3. J Phys Condens Mater 22(31):315403. doi:10.1088/0953-8984/22/31/315403 CrossRefGoogle Scholar
  59. Zou Y, Irifune T (2012) Phase relations in Mg3Cr2Si3O12 and formation of majoritic knorringite garnet at high pressure and high temperature. J Miner Petrol Sci 107(5):197–205. doi:10.2465/jmps.120318 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Anna M. Dymshits
    • 1
  • Peter I. Dorogokupets
    • 2
  • Igor S. Sharygin
    • 1
  • Konstantin D. Litasov
    • 1
    • 3
  • Anton Shatskiy
    • 1
    • 3
  • Sergey V. Rashchenko
    • 1
    • 3
  • Eiji Ohtani
    • 4
  • Akio Suzuki
    • 4
  • Yuji Higo
    • 5
  1. 1.V.S. Sobolev Institute of Geology and MineralogySiberian Branch of Russian Academy of ScienceNovosibirskRussia
  2. 2.Institute of the Earth’s CrustSiberian Branch of the Russian Academy of SciencesIrkutskRussia
  3. 3.Novosibirsk State UniversityNovosibirskRussia
  4. 4.Department of Earth and Planetary Materials Science, Graduate School of ScienceTohoku UniversitySendaiJapan
  5. 5.SPring-8, Japan Synchrotron Radiation Research InstituteKouto, HyogoJapan

Personalised recommendations