Advertisement

Physics and Chemistry of Minerals

, Volume 43, Issue 6, pp 409–417 | Cite as

Textures in deforming forsterite aggregates up to 8 GPa and 1673 K

  • Caroline Bollinger
  • Paul Raterron
  • Olivier Castelnau
  • Fabrice Detrez
  • Sébastien Merkel
Original Paper

Abstract

We report results from axisymmetric deformation experiments carried out on forsterite aggregates in the deformation-DIA apparatus, at upper mantle pressures and temperatures (3.1–8.1 GPa, 1373–1673 K). We quantified the resulting lattice preferred orientations (LPO) and compare experimental observations with results from micromechanical modeling (viscoplastic second-order self-consistent model—SO). Up to 6 GPa (~185-km depth in the Earth), we observe a marked LPO consistent with a dominant slip in the (010) plane with one observation of a dominant [100] direction, suggesting that [100](010) slip system was strongly activated. At higher pressures (deeper depth), the LPO becomes less marked and more complex with no evidence of a dominant slip system, which we attribute to the activation of several concurrent slip systems. These results are consistent with the pressure-induced transition in the dominant slip system previously reported for olivine and forsterite. They are also consistent with the decrease in the seismic anisotropy amplitude observed in the Earth’s mantle at depth greater than ~200 km.

Keywords

Forsterite Deformation High pressure D-DIA Lattice preferred orientation Micromechanical modeling 

Notes

Acknowledgments

The authors thank Hayian Chen (Stony Brook University), Jennifer Girard (Florida International University, now at Yale University) and Caleb Holyoke (Texas A&M University, now at the University of Akron), for their assistance at the NSLS X17B2 beamline, K. Yuan (Univ. California Berkeley) for assistance in the anisotropy plot of Fig. 3b, N. Hilairet for useful discussions and the two anonymous reviewers for their comments. This research was supported by the Consortium for Materials Properties Research in Earth Sciences (COMPRES) under NSF Cooperative Agreement EAR 06-49658, as well as the Agence Nationale de la Recherche (ANR) Grant BLAN08-2_343541 “Mantle Rheology.” Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886.

References

  1. Bollinger C, Merkel S, Raterron P (2012) In situ quantitative analysis of stress and texture development in forsterite aggregates deformed at 6 GPa and 1373 K. J Appl Crystallogr 45:263–271CrossRefGoogle Scholar
  2. Bollinger C, Raterron P, Cordier P, Merkel S (2014) Polycrystalline olivine rheology in dislocation creep: revisiting experimental data to 8.1 GPa. Phys Earth Planet Inter 228:211–219CrossRefGoogle Scholar
  3. Bollinger C, Merkel S, Cordier P, Raterron P (2015) Deformation of forsterite polycrystals at mantle pressure: comparison with Fe-bearing olivine and the effect of iron on its plasticity. Phys Earth and Planet Inter 240:95–104CrossRefGoogle Scholar
  4. Castelnau O, Blackman DK, Becker TW (2009) Numerical simulations of texture development and associated rheological anisotropy in regions of complex mantle flow. Geophys Res Lett 36:L12304CrossRefGoogle Scholar
  5. Castelnau O, Cordier P, Lebensohn RA, Merkel S, Raterron P (2010) Microstructures and rheology of the Earth’s upper mantle inferred from a multiscale approach. C R Phys 11:304–315CrossRefGoogle Scholar
  6. Couvy H, Frost DJ, Heidelbach F, Nyilas K, Ungár T, Mackwell S, Cordier P (2004) Shear deformation experiments of forsterite at 11 GPa—1400°C in the multianvil apparatus. Eur J Mineral 16:877–889CrossRefGoogle Scholar
  7. Debayle E, Kennett B, Priestley K (2005) Global azimuthal seismic anisotropy and the unique plate-motion deformation of Australia. Nature 433:509–512CrossRefGoogle Scholar
  8. Detrez F, Castelnau O, Cordier P, Merkel S, Raterron P (2015) Effective viscoplastic behavior of polycrystalline aggregates lacking four independent slip systems inferred from homogenization methods; application to olivine. J Mech Phys Solids 83:199–220CrossRefGoogle Scholar
  9. Durham WB, Weidner DJ, Karato S-I, Wang Y (2002) New developments in deformation experiments at high pressure. Rev Mineral Geochem 51:21–49CrossRefGoogle Scholar
  10. Durinck J, Legris A, Cordier P (2005) Pressure sensitivity of olivine slip systems: first-principle calculations of generalised stacking faults. Phys Chem Miner 32:646–654CrossRefGoogle Scholar
  11. Durinck J, Devincre B, Kubin L, Cordier P (2007) Modeling the plastic deformation of olivine by dislocation dynamics simulations. Am Mineral 92:1346–1357CrossRefGoogle Scholar
  12. Frost DJ (2008) The upper mantle and transition zone. Elements 4:171–176CrossRefGoogle Scholar
  13. Gung Y, Panning M, Romanowicz B (2003) Global anisotropy and the thickness of continents. Nature 422:707–711CrossRefGoogle Scholar
  14. Hansen LN, Zimmerman ME, Kohlstedt DL (2012) Laboratory measurements of the viscous anisotropy of olivine aggregates. Nature 492:415–418CrossRefGoogle Scholar
  15. Hilairet N, Wang Y, Sanehira T, Merkel S, Mei S (2012) Deformation of olivine under mantle conditions: an in situ high-pressure, high-temperature study using monochromatic synchrotron radiation. J Geophys Res Solid Earth 117:B01203CrossRefGoogle Scholar
  16. Ismail WB, Mainprice D (1998) An olivine fabric database: an overview of upper mantle fabrics and seismic anisotropy. Tectonophysics 29:145–157CrossRefGoogle Scholar
  17. Jung H, Karato S-I (2001) Water-induced fabric transitions in olivine. Science 293:1460–1463CrossRefGoogle Scholar
  18. Jung H, Katayama I, Jiang Z, Hiraga T, Karato S-I (2006) Effect of water and stress on the lattice-preferred orientation of olivine. Tectonophysics 421:1–22CrossRefGoogle Scholar
  19. Jung H, Mo W, Green HW (2009) Upper mantle seismic anisotropy resulting from pressure-induced slip transition in olivine. Nat Geosci 2:73–77CrossRefGoogle Scholar
  20. Karato S-I, Wu P (1993) Rheology of the upper mantle: a synthesis. Science 260:771–778CrossRefGoogle Scholar
  21. Katayama I, Jung H, Karato S-I (2004) New type of olivine fabric from deformation experiments at modest water content and low stress. Geology 32:1045CrossRefGoogle Scholar
  22. Kohlstedt DL, Keppler H, Rubie DC (1996) Solubility of water in the a, β and γ phases of (Mg, Fe)2SiO4. Contrib Mineral Petrol 123:345–357CrossRefGoogle Scholar
  23. Mainprice D, Barruol G, Ismaïl WB (2000) The seismic anisotropy of the Earth’s mantle: from single crystal to polycrystal. In: Karato S, Forte A, Liebermann R, Masters G, Stixrude L (eds) Earth’s deep interior: mineral physics and tomography from the atomic to the global scale. AGU, Washington, DC, pp 237–262CrossRefGoogle Scholar
  24. Mainprice D, Tommasi A, Couvy H, Cordier P, Frost DJ (2005) Pressure sensitivity of olivine slip systems and seismic anisotropy of Earth’s upper mantle. Nature 433:731–733CrossRefGoogle Scholar
  25. McDonnell RD, Peach CJ, van Roermund HLM, Spiers CJ (2000) Effect of varying enstatite content on the deformation behavior of fine-grained synthetic peridotite under wet conditions. J Geophys Res Solid Earth 105:13535–13553CrossRefGoogle Scholar
  26. Merkel S, Hilairet N (2015) Multifit/Polydefix: a framework for the analysis of polycrystal deformation using X-rays. J Appl Cryst 48:1307–1313CrossRefGoogle Scholar
  27. Miyazaki T, Sueyoshi K, Hiraga T (2013) Olivine crystals align during diffusion creep of Earth’s upper mantle. Nature 502:321–326CrossRefGoogle Scholar
  28. Nishihara Y, Ohuchi T, Kawazoe T, Spengler D, Tasaka M, Kikegawa T, Suzuki AM, Ohtani E (2014) Rheology of fine-grained forsterite aggregate at deep upper mantle conditions. J Geophys Res Solid Earth 119:253–273CrossRefGoogle Scholar
  29. Ohuchi T, Irifune T (2014) Crystallographic preferred orientation of olivine in the Earth’s deep upper mantle. Phys Earth Planet Inter 228:220–231CrossRefGoogle Scholar
  30. Ohuchi T, Kawazoe T, Nishihara Y, Nishiyama N, Irifune T (2011) High pressure and temperature fabric transitions in olivine and variations in upper mantle seismic anisotropy. Earth Planet Sci Lett 304:55–63CrossRefGoogle Scholar
  31. Paterson MS (1982) The determination of hydroxyl by infrared absorption in quartz, silicate glasses and similar materials. Bull Minéral 105:20–29Google Scholar
  32. Ponte Castañeda P (2002) Second-order homogenization estimates for nonlinear composites incorporating field fluctuations. i—theory. J Mech Phys Solids 50:737–757CrossRefGoogle Scholar
  33. Raterron P, Chen J, Li L, Weidner D, Cordier P (2007) Pressure-induced slip-system transition in forsterite: single-crystal rheological properties at mantle pressure and temperature. Am Mineral 92:1436–1445CrossRefGoogle Scholar
  34. Raterron P, Amiguet E, Chen J, Li L, Cordier P (2009) Experimental deformation of olivine single crystals at mantle pressures and temperatures. Phys Earth Planet Inter 172:74–83CrossRefGoogle Scholar
  35. Raterron P, Chen J, Geenen T, Girard J (2011) Pressure effect on forsterite dislocation slip systems: implications for upper-mantle LPO and low viscosity zone. Phys Earth Planet Inter 188:26–36CrossRefGoogle Scholar
  36. Raterron P, Girard J, Chen J (2012) Activities of olivine slip systems in the upper mantle. Phys Earth Planet Inter 200–201:105–112CrossRefGoogle Scholar
  37. Takei H, Kobayashi T (1974) Growth and properties of Mg2SiO4 single crystals. J Crystal Growth 23:121–124CrossRefGoogle Scholar
  38. Tommasi A, Mainprice D, Canova GR, Chastel Y (2000) Viscoplastic self-consistent and equilibrium-based modeling of olivine lattice preferred orientations: implications for the upper mantle seismic anisotropy. J Geophys Res 105:7893–7908CrossRefGoogle Scholar
  39. Vaughan M, Chen J, Li L, Weidner D, Li B (2000) Of X-ray imaging techniques at high-pressure and temperature for strain measurements. In: Manghnani MH, Nellis WJ, Nicol MF (eds) AIRAPT-17. Universities Press, Hyderabad, pp 1097–1098Google Scholar
  40. Wang Y, Durham WB, Getting IC, Weidner DJ (2003) The deformation-DIA: a new apparatus for high temperature triaxial deformation to pressures up to 15 GPa. Rev Sci Instrum 74:3002CrossRefGoogle Scholar
  41. Weidner DJ, Vaughan MT, Wang L, Long H, Li L, Dixon NA, Durham WB (2010) Precise stress measurements with white synchrotron X rays. Rev Sci Instrum 81:013903CrossRefGoogle Scholar
  42. Wenk H-R, Matthies S, Donovan J, Chateigner D (1998) BEARTEX: a Windows-based program system for quantitative LPO analysis. J Appl Cryst 31:262–269CrossRefGoogle Scholar
  43. Yuan K, Beghein C (2013) Seismic anisotropy changes across upper mantle phase transitions. Earth Planet Sci Lett 374:132–144CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.UMET, Unité Matériaux et Transformations, CNRS, INRA, ENSCLUniversité de LilleLilleFrance
  2. 2.Procédés et Ingénierie en Mécanique et Matériaux (PIMM), CNRSArts et Métiers ParisTechParisFrance
  3. 3.Institut Universitaire de FranceParisFrance
  4. 4.Bayerisches Geoinstitut (BGI)University of BayreuthBayreuthGermany
  5. 5.Laboratoire de Modélisation et Simulation Multi Echelle (MSME), CNRSUniversité Paris-EstMarne-la-Vallée Cedex 2France

Personalised recommendations