Physics and Chemistry of Minerals

, Volume 43, Issue 5, pp 327–340 | Cite as

Ionic conductivity in gem-quality single-crystal alkali feldspar from the Eifel: temperature, orientation and composition dependence

  • Hamid El Maanaoui
  • Fabian Wilangowski
  • Aditya Maheshwari
  • Hans-Dieter Wiemhöfer
  • Rainer Abart
  • Nicolaas A. StolwijkEmail author
Original Paper


We measured the ion conductivity of single-crystal alkali feldspar originating from two different locations in the Eifel/Germany, named Volkesfeld and Rockeskyller sanidine and having potassium site fractions \(C_\mathrm{K}\) of 0.83 and 0.71, respectively. The dc conductivities resulting from electrochemical impedance spectroscopy over the temperature range of 300–900 \(^{\circ }\hbox {C}\) show a weak composition dependence but pronounced differences between the b-direction [\(\perp (010)\)] and \(c^{*}\)-direction [\(\perp (001)\)] of the monoclinic feldspar structure. Conductivity activation energies obtained from the observed linear Arrhenius plots are close to 1.2 eV in all cases, which is closely similar to the activation energies of the \(^{22}\mathrm{Na}\) tracer diffusivity in the same crystals. Taking into account literature data on K tracer diffusion and diffusion correlation effects, the present results point to a predominance of the interstitialcy mechanism over the vacancy mechanism in mass and charge transport on the alkali sublattice in potassium-rich alkali feldspar.


Haven ratio Impedance spectroscopy Nernst–Einstein equation Orthoclase Sanidine Tracer diffusion 



Gerald Giester is gratefully acknowledged for orienting single-crystal fragments on an X-ray goniometer, and Andreas Wanger is thanked for preparation of perfectly suited samples. The authors thank Michael Hackmann for taking preliminary measurements on single-crystal alkali feldspar and Frank Berkemeier for providing platinum deposition by magnetron sputtering. We are indebted to Anne Schäffer, Conny Cramers and Arno Knieschewski for helpful discussions. Financial support by the Deutsche Forschungsgemeinschaft is gratefully acknowledged.


  1. Abart R, Petrishcheva E, Wirth R, Rhede D (2009) Exsolution by spinodal decomposition II: perthite formation during slow cooling of anatexites from Ngoronghoro, Tanzania. Am J Sci 309:450–475CrossRefGoogle Scholar
  2. Behrens H, Johannes W, Schmalzried H (1990) On the mechanisms of cation diffusion processes in ternary feldspars. Phy Chem Miner 17:62–78CrossRefGoogle Scholar
  3. Beran A (1986) A model of water allocation in alkali feldspar derived from infrared-spectroscopic investigations. Phys Chem Miner 13:306–310CrossRefGoogle Scholar
  4. Cherniak D (2010) Cation diffusion in feldspars. Rev Mineral Geochem 72:691–733CrossRefGoogle Scholar
  5. Christoffersen R, Yund R, Tullis J (1983) Interdiffusion of K and Na in alkali feldspars: diffusion couple experiments. Am Mineral 68:1126–1133Google Scholar
  6. Demtröder K (2011) Untersuchung zur Al/Si-Ordnung an Sanidin Megakristallen aus der Eifel. Master’s thesis, Ruhr-Universität BochumGoogle Scholar
  7. Foland KA (1974) Alkali diffusion in orthoclase. Geochem Transp Kinet 634:77–98Google Scholar
  8. Fredericks WJ (1975) Diffusion in alkali halides. In: Nowick AS, Burton JJ (eds) Diffusion in solids - recent developments. Academic Press, New York, pp 381–444Google Scholar
  9. Giletti B, Semet M, Kasper R (1974) Self-diffusion of potassium in low albite using an ion microprobe. Geol Soc Am Abstr Program 6:754Google Scholar
  10. Hu H, Li H, Lidong D, Shuangming S, Chengming Z (2011) Electrical conductivity of albite at high temperatures and high pressures. Am Mineral 96:1821–1827CrossRefGoogle Scholar
  11. Hu H, Li H, Lidong D, Shuangming S, Chengming Z (2013) Electrical conductivity of alkali feldspar solid solutions at high temperatures and high pressures. Phys Chem Miner 40:51–62CrossRefGoogle Scholar
  12. Imre AW, Voss S, Mehrer H (2002) Ionic transport in 0.2[xNa2O·(1-x)Rb2O]\(\cdot \)0.8B\(_2\)O\(_3\) mixed-alkali glasses. Phys Chem Chem Phys 4:3219–3224CrossRefGoogle Scholar
  13. Johnson EA, Rossman GR (2013) The diffusion behavior of hydrogen in plagioclase feldspar at 800–1000 \(^\circ\) C: implications for re-equilibration of hydroxyl in volcanic phenocrysts. Am Mineral 98:1779–1787CrossRefGoogle Scholar
  14. Jones A, Islam M, Mortimer M, Palmer D (2004) Alkali ion migration in albite and K-feldspar. Phys Chem Miner 31:313–320CrossRefGoogle Scholar
  15. Kasper R (1975) Cation and oxygen diffusion in albite. PhD thesis, Brown University, Providence, Rhode IslandGoogle Scholar
  16. Kroll H, Ribbe PH (1983) Lattice parameters, composition and Al, Si order in alkali feldspars. Rev Mineral Geochem 2:57–100Google Scholar
  17. Kronenberg AK, Yund RA, Rossman GR (1996) Stationary and mobile hydrogen defects in potassium feldspar. Geochim et Cosmochim Acta 60:4075–4094CrossRefGoogle Scholar
  18. Manning JR (1968) Diffusion kinetics for atoms in crystals. Van Nostrand, PrincetonGoogle Scholar
  19. Maury R (1968a) Conductibilite electrique des tectosilicates. I. methode et resultats experimentaux. Bulletin de la Societe Francaise de Mineralogie et Cristallographie 91:267–278Google Scholar
  20. Maury R (1968b) Conductibilite electrique des tectosilicates. II. Discussion des resultats. Bulletin de la Societe Francaise de Mineralogie et Cristallographie 91:355–366Google Scholar
  21. Mehrer H (2007) Diffusion in solids. Springer, BerlinCrossRefGoogle Scholar
  22. Murch GE, Dyre JC (1989) Correlation effects in ionic conductivity. CRC Crit Rev Solid State Mater Sci 14:345–365CrossRefGoogle Scholar
  23. Nazarov AV, Gurov K (1979) Calculation of non-equilibrium vacancies in the phenomenological theory of mutual diffusion. Phys Met Metall 45:185–188Google Scholar
  24. Neusser G, Abart R, Fischer F, Harlov D, Norberg N (2012) Experimental Na/K exchange between alkali feldspar and an NaCl–KCl salt melt: chemically induced fracturing and element partitioning. Contrib Mineral Petrol 164:341–358CrossRefGoogle Scholar
  25. Petrishcheva E, Abart R (2009) Exsolution by spinodal decomposition I: evolution equation for binary mineral solutions with anisotropic interfacial energy. Am J Sci 309:431–449CrossRefGoogle Scholar
  26. Petrishcheva E, Abart R (2012) Exsolution by spinodal decomposition in multicomponent mineral solutions. Acta Mater 60:5481–5493CrossRefGoogle Scholar
  27. Petrishcheva E, Abart R, Schaeffer A, Habler G, Rhede D (2014) Sodium–potassium interdiffusion in potassium-rich alkali feldspar I: full diffusivity tensor at 850 °C. Am J Sci 314:1284–1299CrossRefGoogle Scholar
  28. Petrović R (1972) Alkali ion diffusion in alkali feldspars. Ph.D thesis, Yale University, New Haven, ConnecticutGoogle Scholar
  29. Schaeffer AK, Petrishcheva E, Habler G, Abart R, Rhede D, Giester G (2014) Sodium–potassium interdiffusion in potassium-rich alkali feldspar II: composition- and temperature-dependence obtained from cation exchange experiments. Am J Sci 314:1300–1318CrossRefGoogle Scholar
  30. Schreuer J, Demtröder K, Sondergeld P, Dehn S (2010) Anomalous elastic behaviour of hydrous sanidine megacrysts from the Eifel, Germany. In: Friederich W (ed) Lithospheric deformation - turning observations into models, Abstract volume. Sprockhövel, pp 117–118Google Scholar
  31. Spear F (1994) Metamorphic phase equilibria and pressure–temperature–time paths. Mineralogical Society of America, WashingtonGoogle Scholar
  32. Stephenson PCL, Sholl CA (1994) Tracer correlation factor and atomic displacements due to the collinear interstitialcy mechanism. Philos Mag A 69:57–64CrossRefGoogle Scholar
  33. Tyburczy JA, Fisler DK (1995) Electrical properties of minerals and melts. In: Ahrens TJ (ed) Mineral physics and crystallography: a handbook of physical constants. American Geophysical Union, Washington, pp 185–208Google Scholar
  34. Wilangowski F (2013) Tracer diffusion of sodium in a potassium-rich feldspar. Master’s thesis, University of Münster, GermanyGoogle Scholar
  35. Wilangowski F, Stolwijk NA (2015a) Monte carlo simulation of diffusion and ionic conductivity in a simple cubic random AB alloy by the interstitialcy mechanism. J Phys Condens Matter 27(505):401Google Scholar
  36. Wilangowski F, Stolwijk NA (2015b) Vacancy-related diffusion correlation effects in a simple cubic random alloy and on the Na–K sublattice of alkali feldspar. Philos Mag 95:2277–2293CrossRefGoogle Scholar
  37. Wilangowski F, Divinski S, Abart R, Stolwijk NA (2015) Radiotracer experiments and monte carlo simulation of sodium diffusion in alkali feldspar: evidence against the vacancy mechanism. Defect Diffus Forum 363:79–84CrossRefGoogle Scholar
  38. Yang X, Keppler H, McCammon C, Ni H (2012) Electrical conductivity of orthopyroxene and plagioclase in the lower crust. Contrib Mineral Petrol 163:33–48CrossRefGoogle Scholar
  39. Zhang BH, Shan SM, Wu XP (2015) Modeling H, Na, and K diffusion in plagioclase feldspar by relating point defect parameters to bulk properties. Phys Chem Miner. doi: 10.1007/s00269-015-0782-5 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Hamid El Maanaoui
    • 1
  • Fabian Wilangowski
    • 1
  • Aditya Maheshwari
    • 2
  • Hans-Dieter Wiemhöfer
    • 2
  • Rainer Abart
    • 3
  • Nicolaas A. Stolwijk
    • 1
    Email author
  1. 1.Institut für MaterialphysikUniversity of MünsterMünsterGermany
  2. 2.Institut für Anorganische und Analytische ChemieUniversity of MünsterMünsterGermany
  3. 3.Department of Lithospheric ResearchUniversity of ViennaViennaAustria

Personalised recommendations