Physics and Chemistry of Minerals

, Volume 43, Issue 4, pp 287–300 | Cite as

Crystal and molecular structure and spectroscopic behavior of isotypic synthetic analogs of the oxalate minerals stepanovite and zhemchuzhnikovite

  • Oscar E. Piro
  • Gustavo A. Echeverría
  • Ana C. González-Baró
  • Enrique J. Baran
Original Paper

Abstract

The crystal structure of synthetic stepanovite, Na[Mg(H2O)6][Fe(C2O4)3]·3H2O, and zhemchuzhnikovite, Na[Mg(H2O)6][Al0.55Fe0.45(C2O4)3]·3H2O, has been determined by single-crystal X-ray diffraction methods. The compounds are isotypic to each other and to the previously reported Na[Mg(H2O)6][M(C2O4)3]·3H2O (M: Cr, Al). They crystallize in the trigonal P3c1 space group with Z = 6 molecules per unit cell and (hexagonal axes) a = 17.0483(4), c = 12.4218(4) Å for the iron compound, and a = 16.8852(5), c = 12.5368(5) Å for the Al/Fe solid solution. Comparison of our crystallographic results with previous X-ray diffraction and chemical data of type stepanovite and zhemchuzhnikovite minerals provides compelling evidence that these natural materials possess the same crystal and molecular structure as their synthetic counterparts. It is shown that the originally reported unit cell for stepanovite represents a pronounced sub-cell and that the correct unit cell and space group are based on weak superstructure reflections. The infrared and Raman spectra of both synthetic analogs were also recorded and are briefly discussed.

Keywords

Stepanovite Zhemchuzhnikovite Synthetic analogs Crystal structure Vibrational spectra 

References

  1. Anthony JW, Bideaux RA, Bladh KW, Nichols MC (eds) (2004) Handbook of mineralogy, mineralogical society of America, Chantilly, VA 20151-1110, USA; http://www.handbookofmineralogy.org/
  2. Atencio D, Coutinho JMV, Graeser S, Matioli PA, Menezes Filho LAD (2004) Lindbergite, a new Mn oxalate dihydrate from Boca Rica mine, Galiléia, Minas Gerais, Brazil, and other occurrences. Am Mineral 89:1087–1091CrossRefGoogle Scholar
  3. Baran EJ (1995) Química bioinorgánica. McGraw-Hill Interamericana de España SA, MadridGoogle Scholar
  4. Baran EJ (2014) Review: natural oxalates and their analogous synthetic complexes. J Coord Chem 23–24:3734–3768CrossRefGoogle Scholar
  5. Baran EJ, Monje PV (2009) Oxalate biominerals. In: Sigel A, Sigel H, Sigel RKO (eds) Metal ions in life sciences, vol 4., Biomineralization, from nature to applicationsWiley, Chichester, pp 219–254Google Scholar
  6. Chukanov NV (2014) Infrared spectra of mineral species, vol 1. Springer, DordrechtCrossRefGoogle Scholar
  7. Chukanov NV, Pekov IV, Olysych LV, Massa W, Yakubovich OV, Zadov AE, Rastsvetaeva RK, Vigasina MF (2010) Kyanoxalite, a new cancrinite group mineral species with extraframework oxalate anion from the Lovezaro Alkaline Pluton, Kola Peninsula. Geol Ore Deposits 52:778–790CrossRefGoogle Scholar
  8. Clarke RM, Williams IR (1986) Moolooite, a naturally occurring hydrated copper oxalate from Western Australia. Mineral Mag 50:295–298CrossRefGoogle Scholar
  9. CrysAlisPro (2014) Oxford diffraction Ltd., Version 1.171.37.31 (release 14-01-2014 CrysAlis171.NET)Google Scholar
  10. Echigo T, Kimata M (2010) Crystal chemistry and genesis of organic minerals: a review of oxalate and polycyclic aromatic hydrocarbon minerals. Canad Mineral 48:1329–1357CrossRefGoogle Scholar
  11. Edwards HGM, Russell NC (1998) Vibrational spectroscopic study of iron(II) and iron(III) oxalates. J Mol Struc 443:223–231CrossRefGoogle Scholar
  12. Farrugia LJ (1997) ORTPEP-3 for Windows-A version of ORTEP-III with a graphical user interface (GUI). J Appl Crystallogr 30:565CrossRefGoogle Scholar
  13. Fleischer M (1955) New mineral names: stepanovite. Am Mineral 40:551Google Scholar
  14. Fleischer M (1956) New mineral names: minguzzite. Am Mineral 41:370Google Scholar
  15. Fleischer M (1962) New mineral names: Zhemchuzhnikovite. Am Mineral 47:1482–1483Google Scholar
  16. Fleischer M (1964) New mineral names: zhemchuzhnikovite, Stepanovite. Am Mineral 49:442Google Scholar
  17. Fraústo da Silva JJR, Williams RJP (1991) The biological chemistry of the elements. Clarendon Press, OxfordGoogle Scholar
  18. Frossard L (1956) Etude de trioxalatochrominate de sodium et de magnésium. Schweiz Mineral Petrograph Mitt 36:1–25Google Scholar
  19. Fujita J, Martell AE, Nakamoto K (1962a) Infrared spectra of metal chelate compounds. VI. A normal coordinate treatment of oxalate metal complexes. J Chem Phys 36:324–331CrossRefGoogle Scholar
  20. Fujita J, Martell AE, Nakamoto K (1962b) Infrared spectra of metal chelate compounds. VII. Normal coordinate treatments on 1:2 and 1:3 oxalato complexes. J Chem Phys 36:331–338CrossRefGoogle Scholar
  21. Garavelli CL (1955a) Ritrovamento de oxalite tra i minerali secondari del giacimento de Capo Calamita. Rend Soc Mineral Ital 11:176–181Google Scholar
  22. Garavelli CL (1955b) Un nuovo minerali tra i prodotti secondari del giacimento di Capo Calamita (Isola d’Elba). Atti Accad Naz Linzei 18:392–402Google Scholar
  23. Junk PC (2005) Supramolecular interactions in the X-ray crystal structure of potassium tris(oxalato)ferrate(III) trihydrate. J Coord Chem 58:355–361CrossRefGoogle Scholar
  24. Khan SR (1995) Calcium oxalate in biological systems. CRC Press, Boca RatonGoogle Scholar
  25. Knipovich YN, Komkov AI, Nefedov EI (1963) On stepanovite and the new mineral zhemchuzhnikovite. Trudy Vses Nauchno-Issled Geol Inst 96:131–135 (in Russian) Google Scholar
  26. Krishnamurty KY, Harris GM (1961) The chemistry of the metal oxalate complexes. Chem Rev 61:213–246CrossRefGoogle Scholar
  27. Libowitzky E (1999) Correlation of O–H stretching frequencies and O–H···O hydrogen bond lengths in minerals. Monatsh Chem 130:1047–1059Google Scholar
  28. Lipkowski J, Herbich J (1975) Preparation, composition and crystal growth of sodium magnesium tris(oxalato)aluminate nonahydrate containing ferric ions. Rocz Chem 49:853–857 (in Polish) Google Scholar
  29. Matioli PA, Atencio DM, Coutinho JMV, Menezes Filho LAD (1997) Humboldtina de Santa Maria de Itabira, Minas Gerais, primeira ocorrência brasileira e primeira ocorrência mundial em fraturas de pegmatito. Anais Acad Bras Cien 69:431–432Google Scholar
  30. Monje PV, Baran EJ (2004) Plant biomineralization. In: Hemantaranjan A (ed) Advances in plant physiology, vol 7. Scientific Publishers, Jodhpur, pp 395–410Google Scholar
  31. Mortensen OS (1967) Vibronic spectra of transition-metal complexes. I. Polarized emission and absorption spectra of NaMg[Cr(C2O4)3]·9H2O. J Chem Phys 47:4215–4222CrossRefGoogle Scholar
  32. Nakamoto K (2009) Infrared and Raman spectra of inorganic and coordination compounds, 6th edn. Wiley, New YorkGoogle Scholar
  33. Nefedov EI (1953) Report of new minerals discovered by him. Zapisky Vses Mineral Obshch 82:311–317 (in Russian) Google Scholar
  34. Peacor DR, Rouse RC, Essene EJ, Lauf RJ (1999) Coskrenite-(Ce) (Ce, Nd, La)2 (SO4)2(C2O4)·8H2O, a new rare earth oxalate mineral from Alum Cave Bluff, Tennessee: characterization and crystal structure. Canad Mineral 37:1453–1462Google Scholar
  35. Piper TS, Carlin RL (1960) Polarized visible spectra of crystalline trisoxalato-metallates: the source of intensity. J Chem Phys 33:608–609CrossRefGoogle Scholar
  36. Piper TS, Carlin RL (1961) Polarized visible spectra of crystalline trisoxalato-metallates. J Chem Phys 35:1809–1815CrossRefGoogle Scholar
  37. Piro OE, Echeverría GA, González-Baró AC, Baran EJ (2015) Crystallographic new light of an old complex: NaMg[Cr(C2O4)3]·9H2O and structure redetermination of the isomorphous aluminum(III) compound. J Coord Chem 38:3776–3787CrossRefGoogle Scholar
  38. Riesen H, Rae D (2008) Revisiting the crystal structure and thermal properties of NaMgAl(oxalate)3·9H2O/Cr(III): an extraordinary spectral hole-burning material. Dalton Trans 2008:4717–4722CrossRefGoogle Scholar
  39. Rouse RC, Peacor DR, Dunn PJ, Simmons WB, Newbury D (1986) Wheatleyite, Na2[Cu(C2O4)2]·2H2O, a natural sodium copper salt of oxalic acid. Am Mineral 71:1240–1242Google Scholar
  40. Rouse RC, Peacor DR, Essene EJ, Coskren TD, Lauf RJ (2001) The new minerals levinsonite-(Y) [(Y, Nd, Ce)Al(SO4)2(C2O4)·12H2O] and zugshunstite-(Ce) [(Ce, Nd, La)Al(SO4)2(C2O4)·12H2O]: coexisting oxalates with different structures and differentiation of LREE and HREE. Geochim Cosmochim Acta 65:1101–1115CrossRefGoogle Scholar
  41. Saritha A, Raju B, Ramachary M, Raghavaiah P, Hussain KA (2012) Synthesis, crystal structure and characterization of chiral, three-dimensional anhydrous potassium tris(oxalato)ferrate(III). Phys B 407:4208–4213CrossRefGoogle Scholar
  42. Sheldrick GM (2008) A short history of SHELX. Acta Crystallogr A 64:112–122CrossRefGoogle Scholar
  43. Sheldrick GM (2015) SHELXT-Integrated space group and crystal structure determination. Acta Crystallogr A 71:3–8CrossRefGoogle Scholar
  44. Siebert H (1966) Anwendungen der Schwingungsspektroskopie in der Anorganischen Chemie. Springer, BerlinCrossRefGoogle Scholar
  45. Strunz H, Nickel EH (2001) Strunz Mineralogical Tables. E. Schweizerbart’sche Verlagsbuchhandlung, StuttgartGoogle Scholar
  46. Suh J-S, Shin J-Y, Yoon C, Lee K-W, Suh I-H, Lee J-H, Ryu B-Y, Lim S-S (1994) The crystal and molecular structure of sodium magnesium tris(oxalate) chromate(III) decahydrate, NaMg[Cr(C2O4)3]·10H2O. Bull Kor Chem Soc 15:245–249Google Scholar
  47. Taylor D (1978) The crystal structures of potassium tris(oxalato)-chromate(III) and -aluminate(III) trihydrate: a reinvestigation. Austral J Chem 31:1455–1462CrossRefGoogle Scholar
  48. Truchanowicz T (1974) Thermal analysis and determination of x-ray powder data for sodium magnesium trioxalatoaluminate nonahydrate and sodium magnesium trioxalatochromate(III) nonahydrate crystals. Chem Anal (Warsaw) 19:1089–1094 (in Polish) Google Scholar
  49. Truchanowicz T, Durski Z (1971) Determination of lattice constants and possible space groups of NaMg[Al(C2O4)3]·9H2O crystals. Rocz Chem 45:1777–1778 (in Polish) Google Scholar
  50. van Niekerk JN, Schoening FRL (1952) The structure of potassium trioxalatochromate(III), K3[Cr(C2O4)3]·3H2O. Acta Crystallogr 5:196–202CrossRefGoogle Scholar
  51. Weiner S, Dove PM (2003) An overview of biomineralization processes and the problem of the vital effect. In: Dove PM, De Yoreo JJ, Weiner S (eds) Reviews in mineralogy and geochemistry, vol 54., Mineralogical SocAmerica/Geochemical Soc, Washington, DC, pp 1–29Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Oscar E. Piro
    • 1
  • Gustavo A. Echeverría
    • 1
  • Ana C. González-Baró
    • 2
  • Enrique J. Baran
    • 2
  1. 1.Departamento de Física, Facultad de Ciencias ExactasUniversidad Nacional de La Plata and Institute IFLP (CONICET, CCT-La Plata)La PlataArgentina
  2. 2.Centro de Química Inorgánica (CEQUINOR, CONICET/UNLP), Facultad de Ciencias ExactasUniversidad Nacional de La PlataLa PlataArgentina

Personalised recommendations