Advertisement

Physics and Chemistry of Minerals

, Volume 42, Issue 10, pp 825–833 | Cite as

A new mineral species rossovskyite, (Fe3+,Ta)(Nb,Ti)O4: crystal chemistry and physical properties

  • Sergey I. Konovalenko
  • Sergey A. Ananyev
  • Nikita V. Chukanov
  • Ramiza K. Rastsvetaeva
  • Sergey M. Aksenov
  • Anna A. Baeva
  • Ramil R. GainovEmail author
  • Farit G. Vagizov
  • Oleg N. Lopatin
  • Tatiana S. Nebera
Original Paper

Abstract

A new mineral rossovskyite named after L.N. Rossovsky was discovered in granite pegmatites of the Bulgut occurrence, Altai Mts., Western Mongolia. Associated minerals are microcline, muscovite, quartz, albite, garnet of the almandine–spessartine series, beryl, apatite, triplite, zircon, pyrite, yttrobetafite-(Y) and schorl. Rossovskyite forms flattened anhedral grains up to 6 × 6 × 2 cm. The color of the mineral is black, and the streak is black as well. The luster is semi-metallic, dull. Mohs hardness is 6. No cleavage or parting is observed. Rossovskyite is brittle, with uneven fracture. The density measured by the hydrostatic weighing method is 6.06 g/cm2, and the density calculated from the empirical formula is 6.302 g/cm3. Rossovskyite is biaxial, and the color in reflection is gray to dark gray. The IR spectrum contains strong band at 567 cm−1 (with shoulders at 500 and 600 cm−1) corresponding to cation–oxygen stretching vibrations and weak bands at 1093 and 1185 cm−1 assigned as overtones. The reflection spectrum in visible range is obtained. According to the Mössbauer spectrum, the ratio Fe2+:Fe3+ is 35.6:64.4. The chemical composition is as follows (electron microprobe, Fe apportioned between FeO and Fe2O3 based on Mössbauer data, wt%): MnO 1.68, FeO 5.92, Fe2O3 14.66, TiO2 7.69, Nb2O5 26.59, Ta2O5 37.51, WO3 5.61, total 99.66. The empirical formula calculated on four O atoms is: \( {\text{Mn}}_{0.06}^{2 + } \) \( {\text{Fe}}_{0.21}^{2 + } \) \( {\text{Fe}}_{0.47}^{3 + } \)Ti0.25Nb0.51Ta0.43W0.06O4. The crystal structure was determined using single-crystal X-ray diffraction data. The new mineral is monoclinic, space group P2/c, a = 4.668(1), b = 5.659(1), c = 5.061(1) Å, β = 90.21(1)º; V = 133.70(4) Å3, Z = 2. Topologically, the structure of rossovskyite is analogous to that of wolframite-group minerals. The crystal-chemical formula of rossovskyite is [(Fe3+, Fe2+, Mn)0.57Ta0.32Nb0.11][Nb0.40Ti0.25Fe0.18Ta0.11W0.06]O4. The strongest lines of the powder X-ray diffraction pattern [d, Å (I,  %) (hkl)] are as follows: 3.604 (49) (110), 2.938 (100) (−1−11), 2.534 (23) (002), 2.476 (29) (021), 2.337 (27) (200), 1.718 (26) (−202), 1.698 (31) (−2−21), 1.440 (21) (−311). The type specimen of rossovskyite is deposited in the Mineralogical Museum of the Tomsk State University, Tomsk, 634050 Russia, with the inventory number 20927.

Keywords

New mineral Rossovskyite Structure Granite-pegmatite Mongolia 

Notes

Acknowledgments

This work is supported by the projects of the Russian Science Foundation, Grant No. 14-17-00048, and the Foundation of the President of the Russian Federation, Grant No. MK-4990.2014.5 (in part of structural investigations) as well as German foundation BMBF-05K12CB1. The authors are grateful to both reviewers for detailed reading and very useful corrections of the article.

References

  1. Andrianov VI (1987) Development of the system of crystallographic programs RENTGEN for the computers NORD, CM-4 and EC. Kristallografiya (now Crystallography reports) 32:228–231 (in Russian) Google Scholar
  2. Baeva AA, Konovalenko SI, Bukharova OV (2012) Mineralogy of the rare-earth pegmatites of Indertinskii formation (Mongolian Altai). In: Konovalenko SI (ed) Mineralogy, geochemistry and mineral resources of Asia, vol 2. CNTI, Tomsk, pp 34–42 (in Russian) Google Scholar
  3. Borisenko AS, Skurdin VA, Lebedev VI et al (1988) Metallogeny of the ore region of southeastern Gorny Altai and northwestern Mongolia. In: Smirnov VI (ed) Regularities of the distribution of mineral resources, vol XV. Nauka, Moscow, pp 131–139 (in Russian) Google Scholar
  4. Brandenburg K, Putz H (2005) DIAMOND Version 3. Crystal Impact GbR, Postfach 1251, D-53002 Bonn, GermanyGoogle Scholar
  5. Brown ID, Shannon RD (1973) Empirical bond strength–bond lengths curves for oxides. Acta Crystallogr A 29:266–282CrossRefGoogle Scholar
  6. Chukhrov FV, Bonshtedt-Kupletskaya EM (eds) (1967) Minerals (v II, issue 3). Nauka, Moscow, p 676 (in Russian)Google Scholar
  7. Diffraction Oxford (2009) CrysAlisPro. Oxford Diffraction Ltd, AbingdonGoogle Scholar
  8. Ercit TS, Hawthorne FC, Černý P (1992a) The wodginite group. I. Structural crystallography. Can Miner 30:597–611Google Scholar
  9. Ercit TS, Černý P, Hawthorne FC, McCammon CA (1992b) The wodginite group. II. Crystal chemistry. Can Miner 30:613–631Google Scholar
  10. Escobar C, Cid-Dresden H, Kittl P, Dumler I (1971) The relation between “light wolframite” and common wolframite. Am Miner 56:489–498Google Scholar
  11. Feklichev VG (1989) Diagnostic constants of minerals. Nedra, Moscow, p 480 (in Russian)Google Scholar
  12. Galliski MA, Černý P, Márquez-Zavalía MF, Chapman R (1999) Ferrotitanowodginite, Fe2+TiTa2O8, a new mineral of the wodginite group from the San Elías pegmatite, San Luis, Argentina. Am Miner 84:773–777Google Scholar
  13. Gavrilova SP, Leontev AN (1976) Structural position and zonality of the pegmatite region of Mongolian Altai. In: Kuzmenko MV (ed) Pegmatite rare-earth deposits, vol 5. IMGRE, Moscow, pp 20–42 (in Russian) Google Scholar
  14. Ghazi-Bayat B, Behruzi M, Litterst FJ, Lottermoser W, Amthauer G (1992) Crystallographic phase transition and valence fluctuation in synthetic Mn-bearing ilvaite CaFe2-x2+Mnx2+Fe3+[Si2O7/O/(OH)]. Phys Chem Miner 18:491–496CrossRefGoogle Scholar
  15. Grice JD, Ferguson RB, Hawthorne FC (1976) The crystal structures of tantalite, ixiolite and wodginite from Bernic lake, Manitoba I. Tantalite and ixiolite. Can Miner 14:540–549Google Scholar
  16. Ibers JA, Hamilton WC (eds) (1974) International Tables for X-ray Crystallography, v IV. The Kynoch Press, BirminghamGoogle Scholar
  17. Khasin RA, Chernyavskiy VI (1963) Pegmatites of middle course of Bulgan-gol river in Western Mongolia. In: Marinov NA (ed) Abstracts for geology of Mongolian People’s Republic. Gostoptechizdat, Moscow, pp 191–218 (in Russian) Google Scholar
  18. Konovalenko SI (1999) Mineral composition and several geochemical peculiarities of facial granite pegmatites for middle course of Bulgan-gol river in Western Mongolia. In: Peвyшкин AC (ed) Natural conditions, history and culture of Western Mongolia and adjacent regions. Tomsk State University, Tomsk, pp 55–57 (in Russian) Google Scholar
  19. Konovalenko SI, Sazontova NA, Bukharova OV (2000) Structural distribution, mineral composition and peculiarities of formation of variable-depth pegmatites of Mongolian Altai. In: Babanskiy MD (ed) Ore deposits. Mineralogy. Geochemistry. Tomsk State University, Tomsk, pp 71–80 (in Russian) Google Scholar
  20. Lottermoser W, Forcher K, Amthauer G, Kunz M, Armbruster T (1997) Site occupation and electric field gradient in acentric neptunite-measurements and evaluations concerning powder- and single crystal—Mössbauer spectroscopy and x-ray diffractometry. Phys Chem Miner 24:2–6CrossRefGoogle Scholar
  21. Nickel EH, Rowland JF, McAdam RC (1963) Ixiolite—a columbite substructure. Am Miner 48:961–979Google Scholar
  22. Palache C, Berman H, Frondel C (1951) Dana’s system of mineralogy (7th edition), vol II. Wiley, New York, pp 1064–1072Google Scholar
  23. Palatinus L, Chapuis G (2007) SUPERFLIP—a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. J Appl Crystallogr 40:786–790CrossRefGoogle Scholar
  24. Petriček V, Dušek M, Palatinus L (2006) Jana2006. Structure determination software programs. Institute of physics, PrahaGoogle Scholar
  25. Smith DGW, Nickel EH (2007) A system for codification for unnamed minerals: report of the subcommittee for unnamed minerals of the IMA commission on new minerals, nomenclature and classification. Can Miner 45:983–1055CrossRefGoogle Scholar
  26. Stevens JG, Khassanov AM, Miller JW, Pollak H, Li Z (2005) Mössbauer mineral handbook. Mossbauer effect data center. University of North Carolina, Asheville, p 626Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Sergey I. Konovalenko
    • 1
  • Sergey A. Ananyev
    • 2
  • Nikita V. Chukanov
    • 3
  • Ramiza K. Rastsvetaeva
    • 4
  • Sergey M. Aksenov
    • 4
    • 5
  • Anna A. Baeva
    • 1
  • Ramil R. Gainov
    • 6
    • 7
    • 8
    Email author
  • Farit G. Vagizov
    • 6
  • Oleg N. Lopatin
    • 6
  • Tatiana S. Nebera
    • 1
  1. 1.Tomsk State UniversityTomskRussia
  2. 2.Siberian Federal UniversityKrasnoyarskRussia
  3. 3.Institute of Problems of Chemical PhysicsRussian Academy of SciencesChernogolovkaRussia
  4. 4.Institute of CrystallographyRussian Academy of SciencesMoscowRussia
  5. 5.Department of CrystallographySt Petersburg State UniversitySt PetersburgRussia
  6. 6.Kazan Federal UniversityKazanRussia
  7. 7.Johannes Gutenberg Universität MainzMainzGermany
  8. 8.Helmholtz-Zentrum Berlin für Materialien und EnergieBerlinGermany

Personalised recommendations