Skip to main content
Log in

The characteristic photoluminescence and EPR features of superdeep diamonds (São-Luis, Brazil)

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Photoluminescence (PL) spectroscopy and electron paramagnetic resonance (EPR) were used for the first time to characterize properties of superdeep diamonds from the São-Luis alluvial deposits (Brazil). The infrared measurements showed the low nitrogen content (>50 of 87 diamonds from this locality were nitrogen free and belonged to type IIa) and simultaneously the extremely high level of nitrogen aggregation (pure type IaB being predominant), which indicates that diamonds under study might have formed under high pressure and temperature conditions. In most cases, PL features excited at various wavelengths (313, 473, and 532 nm) were indicative of different growth and post-growth processes during which PL centers could be formed via interaction between vacancies and nitrogen atoms. The overall presence of the 490.7 nm, H3, and H4 centers in the luminescence spectra attests to strong plastic deformations in these diamonds. The neutral vacancy known as the GR1 center has probably occurred in a number of crystals due to radiation damage in the post-growth period. The 558.5 nm PL center is found to be one of the most common defects in type IIa samples which is accompanied by the EPR center with g-factor of 2.00285. The 536 and 576 nm vibronic systems totally dominated the PL spectra of superdeep diamonds, while none of “normal” diamonds from the Mir pipe (Yakutia) with similar nitrogen characteristics showed the latter three PL centers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Araujo DP, Gaspar JC, Bulanova GP, Smith CB, Kohn SC, Walter MJ, Hauri EH (2013) Juina diamonds from kimberlites and alluvials: a comparison of morphology, spectral characteristics and carbon isotope composition. In: Proceedings of 10th international kimberlite conference, Bangalore, India, pp 255–269

  • Aström M, Scarani A, Torelli M (2013) Detecting HPHT treatment of natural type IIa colorless diamonds. M&A Gemological Instruments Sep 13

  • Brookes EJ, Collins AT, Woods GS (1993) Cathodoluminescence at indentations in diamonds. J Hard Mater 4:98–105

    Google Scholar 

  • Bruce LF, Kopylova MG, Longo M, Ryder J, Dobrzhinetskaya LF (2011) Luminescence of diamond from metamorphic rocks. Am Mineral 96:14–22. doi:10.2138/am.2011.3467

    Article  Google Scholar 

  • Collins AT (2000) Spectroscopy of defects and transition metals in diamond. Diam Relat Matter 9:417–423. doi:10.1016/S0925-9635(99)00314-3

    Article  Google Scholar 

  • Collins AT, Ly CH (2002) Misidentification of nitrogen-vacancy absorption in diamond. J Phys Condens Matter 14(25):467–471. doi:10.1088/0953-8984/14/25/105

    Article  Google Scholar 

  • Collins AT, Woods GS (1982) Cathodoluminescence from ‘giant’ platelets, and of the 2·526 eV vibronic system, in type Ia diamonds. Philos Mag B 45(4):385–397. doi:10.1080/01418638208227446

    Article  Google Scholar 

  • Collins AT, Connor A, Ly CH, Shareef A, Spear PM (2005) High-temperature annealing of optical centers in type-I diamond. J Appl Phys 97:083517. doi:10.1063/1.1866501

    Article  Google Scholar 

  • Davies G (1972) The effect of nitrogen impurity on the annealing of radiation damage in diamond. J Phys C Solid State Phys 5:2534–2542. doi:10.1088/0022-3719/5/17/027

    Article  Google Scholar 

  • De Weerdt F, Collins AT (2007) Broad-band luminescence in natural brown type Ia diamonds. Diam Relat Mater 16:512–516. doi:10.1016/j.diamond.2006.10.003

    Article  Google Scholar 

  • Deljanin B, Simic D, Zaitsev A, Chapman J, Dobrinets I, Widemann A, Del Re N, Middleton T, Deljanin E, De Stefano A (2008) Characterization of pink diamonds of different origin: natural (Argyle, non-Argyle), irradiated and annealed, treated with multi-process, coated and synthetic. Diam Relat Mater 17:1169–1178. doi:10.1016/j.diamond.2008.03.014

    Article  Google Scholar 

  • Dobrinets I, Vins V, Zaitsev A (2013) HPHT-treated diamonds: diamonds forever. Springer Series in Materials Science 181, Springer, Berlin, p 257

    Book  Google Scholar 

  • Doherty MW, Manson NB, Neil B, Delaney P, Jelezko F, Wrachtrup J, Hollenberg LCL (2013) The nitrogen-vacancy colour centre in diamond. Phys Rep 528:1–45. doi:10.1016/j.physrep.2013.02.001

    Article  Google Scholar 

  • Epelboym M, DelRe N, Widemann A, Zaitsev A, Dobrinets I (2011) Characterization of some natural and treated colorless and colored diamonds. G&G 47:133

    Google Scholar 

  • Evans T, Qi Z (1982) The kinetics of the aggregation of nitrogen atoms in diamond. Proc R Soc Lond A381:159–178. doi:10.1098/rspa.1982.0063

    Article  Google Scholar 

  • Fisher D, Spits RA (2000) Spectroscopic evidence of GE POL HPHT-treated natural type IIa diamonds. G&G 36(1):42–49. doi:10.5741/GEMS.36.1.42

    Article  Google Scholar 

  • Fritsch E, Hainschwang T, Massi L, Rondeau B (2007) Hydrogen-related optical centers in natural diamond: an update. New Diamond Front Carbon Technol 17(2):63–89

    Google Scholar 

  • Gaillou E, Post J, Bassim N, Zaitsev AM, Rose T, Fries M, Stroud RM, Steele A, Butler JE (2010) Spectroscopic and microscopic characterization of color lamellae in natural pink diamonds. Diam Relat Mater 19:1207–1220. doi:10.1016/j.diamond.2010.06.015

    Article  Google Scholar 

  • Graham RJ, Buseck PR (1994) Cathodoluminescence of brown diamonds as observed by transmission electron microscopy. Philos Mag Part B 70(6):1177–1185. doi:10.1080/01418639408240282

    Article  Google Scholar 

  • Hainschwang T, Katrusha A, Vollstaedt H (2005) HPHT treatment of different classes of type I brown diamonds. J Gemmol 29(5/6):261–273. doi:10.15506/JoG.2005.29.5.261

    Article  Google Scholar 

  • Hanley PL, Kiflawi I, Lang AR (1977) On topographically identifiable sources of cathodoluminescence in natural diamonds. Philos Trans 284:329–368

    Article  Google Scholar 

  • Harlow GE (1998) The nature of diamonds. Cambridge University Press, Cambridge

    Google Scholar 

  • Harte B, Harris JH (1994) Lower mantle mineral associations preserved in diamonds. Mineral Mag 58A:384–385. doi:10.1180/minmag.1994.58A.1.201

    Article  Google Scholar 

  • Hayman PC, Kopylova MG, Kaminsky FV (2005) Lower mantle diamonds from Rio Soriso (Juina area, Mato Grosso, Brazil). Contrib Mineral Petrol 149:430–445. doi:10.1007/s00410-005-0657-8

    Article  Google Scholar 

  • Hutchison MT, Hursthouse MB, Light ME (2001) Mineral inclusions in diamonds: associations and chemical distinctions around the 670-km discontinuity. Contrib Mineral Petrol 142:119–126. doi:10.1007/s004100100279

    Article  Google Scholar 

  • Iakoubovskii K, Adriaenssens GJ (2002) Optical characterization of natural Argyle diamonds. Diam Relat Mater 11:125–131. doi:10.1016/S0925-9635(01)00533-7

    Article  Google Scholar 

  • Isaenko SI, Sukharev AE, Martins M (2003) Photoluminescence of diamonds from Brazilian placer. In: Proceedings of the 12th science conference of institute of geology of Komi Science Center, GeoPrint, Syktyvkar, pp 95–98

  • Jorge MIB, Pereira ME, Thomaz MF, Davies G, Collins AT (1983) Decay times of luminescence from brown diamonds. Port Phys 14:195–210

    Google Scholar 

  • Kaiser W, Bond WL (1959) Nitrogen, a major impurity in common type I diamond. Phys Rev 115(4):857–863

    Article  Google Scholar 

  • Kaminsky F, Khachatryan G (2001) Characteristics of nitrogen and other impurities in diamonds, as revealed by infrared absorption data. Can Mineral 39:1733–1745. doi:10.2113/gscanmin.39.6.1733

    Article  Google Scholar 

  • Kaminsky F, Zakharchenko O, Davies R, Griffin W, Khachatryan-Blinova G, Shiryaev A (2001) Superdeep diamonds from the Juina area, Mato Grosso State, Brazil. Contrib Mineral Petrol 140(6):734–753. doi:10.1007/s004100000221

    Article  Google Scholar 

  • Kupriyanov IN, Gusev VA, Pal’yanov Yu N, Borzdov Yu M (2000) Photochromic effect in irradiated and annealed nearly IIa type synthetic diamond. J Phys Condens Matter 12:7843–7856. doi:10.1088/0953-8984/12/35/318

    Article  Google Scholar 

  • Lindblom J, Holsa H, Papunen H, Häkkänen H (2005) Luminescence study of defects in synthetic as-grown and HPHT diamonds compared to natural diamonds. Am Mineral 90:428–440. doi:10.2138/am.2005.1681

    Article  Google Scholar 

  • Mendelssohn MJ, Milledge HJ (1995) Morphological characteristics of diamond populations in relation to temperature-dependent growth and dissolution rates. Int Geol Rev 37:285–312. doi:10.1080/00206819509465405

    Article  Google Scholar 

  • Mita Y (1996) Change of absorption spectra in type-Ib diamond with heavy neutron irradiation. Phys Rev B 53(17):11360–11364. doi:10.1103/PhysRevB.53.11360

    Article  Google Scholar 

  • Nadolinny VA, Afanasyev VP, Pokhilenko NP, Yuryeva OP, Eliseev AP, Efimova ES, Logvinova AM (1995) The possibility of using the optical properties of diamonds to diagnose their paragenesis. Dokl Ross Akad Nauk 341:516–518 (in Russian)

    Google Scholar 

  • Nadolinny VA, Yelisseyev AP, Yuryeva OP, Feygelson BN (1997) EPR study of the transformations in nickel containing centres at heated synthetic diamonds. Appl Magn Reson 12(4):543–554. doi:10.1007/BF03164134

    Article  Google Scholar 

  • Nadolinny VA, Yelisseyev AP, Baker JM, Newton ME, Twitchen DJ, Lawson SC, Yuryeva OP, Feigelson BN (1999) A study of 13C hyperfine structure in the EPR of nickel–nitrogen-containing centres in diamond and correlation with their optical properties. J Phys Condens Matter 11:7357–7376. doi:10.1088/0953-8984/11/38/314

    Article  Google Scholar 

  • Nadolinny V, Yuryeva O, Chepurov A, Shatsky V (2009a) Titanium ions in the diamond structure: model and experimental evidence. Appl Magn Reson 36:109–113. doi:10.1007/s-723-009-0013-7)

    Article  Google Scholar 

  • Nadolinny VA, Yurjeva OP, Pokhilenko NP (2009b) EPR and luminescence data on the nitrogen aggregation in diamonds from Snap Lake dyke system. Lithos 112S:865–869. doi:10.1016/j.lithos.2009.05.045

    Article  Google Scholar 

  • Nazaré MH, Woods GS, Assunção MC (1992) The 2.526 eV luminescence band in diamond. Mater Sci Engen B 11:341–345. doi:10.1016/0921-5107(92)90237-4

    Article  Google Scholar 

  • Palyanov YN, Khokhryakov AF, Borzdov YM, Kupriyanov IN (2013) Diamond growth and morphology under the influence of impurity adsorption. Cryst Growth Des 13(12):5411–5419. doi:10.1021/cg4013476

    Article  Google Scholar 

  • Pereira E, Santos L (1993) The 2.96 eV centre in diamond. Phys B Condens Matter 185:222–227. doi:10.1016/0921-4526(93)90241-W

    Article  Google Scholar 

  • Rakhmanova MI, Nadolinny VA, Yuryeva OP (2013) Impurity centers in synthetic and natural diamonds with the electron-vibrational band system at 418 nm in the luminescence spectrum. Phys Solid State 55(1):127–130

    Article  Google Scholar 

  • Shiryaev AA, Hutchison MT, Dembo KA, Dembo AT, Iakubovskii K, Klyuev YuA, Naletov AM (2001) High-temperature high pressure annealing of diamond: small-angle X-ray scattering and optical study. Phys B 308–310:598–603. doi:10.1016/S0921-4526(01)00750-5

    Article  Google Scholar 

  • Smith CP, Bosshard G, Ponahlo J, Hammer VMF, Klapper H, Schmetzer K (2000) GE POL diamonds: before and after. G&G 36(3):192–215. doi:10.5741/GEMS.36.3.192

    Article  Google Scholar 

  • Sobolev EV, Ilyin VE, Yuryeva OP (1969) Electron-phonon interactions in some electron-vibration bands of luminescence spectra of diamonds. Sov Phys Solid State 11:938–944

    Google Scholar 

  • Steeds JW, Davis TJ, Charles SJ, Hayes JM, Butler JE (1999) 3H luminescence in electron-irradiated diamond samples and its relationship to self-interstitials. Diam Relat Mater 8:1847–1852. doi:10.1016/S0925-9635(99)00144-2

    Article  Google Scholar 

  • Taylor WR, Milledge HJ (1995) Nitrogen aggregation character, thermal history and stable isotope composition of some xenolith-derived diamonds from Roberts Victor and Finch. In: 6th International kimberlite conference, Novosibirsk, Russia, pp 620–622

  • Taylor WR, Jaques AL, Ridd M (1990) Nitrogen-defect aggregation characteristics of some Australian diamonds: time–temperature constraints on the source regions of pipe and alluvial diamonds. Am Mineral 75:1290–1310

    Google Scholar 

  • Taylor WR, Canil D, Milledge HJ (1996) Kinetics of Ib to IaA nitrogen aggregation in diamonds. Geochim Cosmochim Acta 60:4725–4733. doi:10.1016/S0016-7037(96)00302-X

    Article  Google Scholar 

  • Titkov SV, Shigley JE, Breeding CM, Mineeva RM, Zudin NG, Sergeev AM (2008) Natural color purple diamonds from Siberia. G&G 44(1):56–64. doi:10.5741/GEMS.44.1.56

    Article  Google Scholar 

  • Tretiakova L (2009) Spectroscopic methods for the identification of natural yellow gem-quality diamond. Eur J Mineral 21:43–50. doi:10.1127/0935-1221/2009/0021-1885

    Article  Google Scholar 

  • Tretiakova L, Tretyakova Y (2008) Significance of spectroscopic methods for identification defects in diamonds. In: 9th International kimberlite conference, vol 1, 91KC-A-00042

  • Twitchen DJ, Baker JM, Newton ME, Johnston K (2000) Identification of cobalt on a lattice site in diamond. Phys Rev B 61:9–11. doi:10.1103/PhysRevB.61.9

    Article  Google Scholar 

  • Wilding MC, Harte B, Harris JW (1991) Evidence for a deep origin for Sao Luiz diamonds. In: 5th International kimberlite conference, Araxa, Brazil, pp 456–458

  • Yang Z, Liang R, Zeng X, Peng M (2012) A microscopy and FTIR and PL spectra study of polycrystalline diamonds from Mengyin kimberlite pipes. ISRN Spectrosc. doi:10.5402/2012/871824

    Google Scholar 

  • Yuryeva OP, Nadolinny VA (1986) Paramagnetic radiation defects in diamond with annealing temperature at 700 K. In: Optical spectroscopy and electron paramagnetic resonance of impurities and defects in diamond. Kiev, ISM of Ukr Acad Sci, pp 60–65 (in Russian)

  • Zaitsev AM (2001) Optical properties of diamond: a data handbook. Springer, Berlin

    Book  Google Scholar 

  • Zedgenizov DA, Kagi H, Shatsky VS, Ragozin AL (2014) Local variations of carbon isotope composition in diamonds from Sao-Luis (Brazil): evidence for heterogenous carbon reservoir in sublithospheric mantle. Chem Geol 363:114–124. doi:10.1016/j.chemgeo.2013.10.033

    Article  Google Scholar 

Download references

Acknowledgments

The study was supported in part by the Siberian Branch of the Russian Academy of Sciences (Integration Project No. 16), the Ministry of Education and Science of the Russian Federation (Project No. 14.B25.31.0032), and the Russian Foundation for Basic Research (Grants No. 15-55-50033, 14-05-92107). The authors would like to thank the two anonymous reviewers for the constructive comments to make the publication  of this paper possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga P. Yuryeva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuryeva, O.P., Rakhmanova, M.I., Nadolinny, V.A. et al. The characteristic photoluminescence and EPR features of superdeep diamonds (São-Luis, Brazil). Phys Chem Minerals 42, 707–722 (2015). https://doi.org/10.1007/s00269-015-0756-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-015-0756-7

Keywords

Navigation