Advertisement

Physics and Chemistry of Minerals

, Volume 42, Issue 8, pp 677–691 | Cite as

The effect of cation order on the elasticity of omphacite from atomistic calculations

  • Richard Skelton
  • Andrew M. Walker
Original Paper

Abstract

Omphacite, a clinopyroxene mineral with two distinct crystallographic sites, M1 and M2, and composition intermediate between diopside and jadeite, is abundant throughout the Earth’s upper mantle and is the dominant mineral in subducted oceanic crust. Unlike the end-members, omphacite exists in two distinct phases, a P2/n ordered phase at low temperature and a high-temperature C2/c disordered phase. The crystal structure and full elastic constants tensor of ordered P2/n omphacite have been calculated to 15 GPa using plane-wave density functional theory. Our results show that several of the elastic constants, notably C 11, C 12, and C 13 deviate from linear mixing between diopside and jadeite. The anisotropy of omphacite decreases with increasing pressure, and at 10 GPa, is lower than that of either diopside or jadeite. The effect of cation disorder is investigated through force-field calculations of the elastic constants of special quasi-random structures supercells with simulated disorder over the M2 sites only, and over both cation sites. These show that cation order influences the elasticity, with some components displaying particular sensitivity to order on a specific cation site. C 11, C 12, and C 66 are sensitive to disorder on M1, while C 22 is softened substantially by disorder on M2, but insensitive to disorder on M1. This shows that the elasticity of omphacite is sensitive to the degree of disorder, and hence the temperature. We expect these results to be relevant to other minerals with order–disorder phase transitions, implying that care must be taken when considering the effects of composition on seismic anisotropy.

Keywords

Elasticity Omphacite Cation order Special quasi-random structures Density functional theory 

Notes

Acknowledgments

AMW is supported by a fellowship from the Natural Environment Research Council (Grant No. NE/K008803/1). Calculations were performed on the Terrawulf cluster, a computational facility supported through the AuScope initiative. AuScope Ltd. is funded under the National Collaborative Research Infrastructure Strategy (NCRIS), an Australian Commonwealth Government Programme. Ian Jackson and two anonymous reviewers are thanked for their helpful comments.

References

  1. Abers GA, van Keken PE, Kneller EA et al (2006) The thermal structure of subduction zones constrained by seismic imaging: implications for slab dehydration and wedge flow. Earth Planet Sci Lett 241:387–397. doi: 10.1016/j.epsl.2005.11.055 CrossRefGoogle Scholar
  2. Babuška V, Fiala J, Kumazawa M et al (1978) Elastic properties of garnet solid-solution series. Phys Earth Planet Inter 16:157–176. doi: 10.1016/0031-9201(78)90086-9 CrossRefGoogle Scholar
  3. Bascou J, Barruol G, Vauchez A et al (2001) EBSD-measured lattice-preferred orientations and seismic properties of eclogites. Tectonophysics 342:61–80. doi: 10.1016/S0040-1951(01)00156-1 CrossRefGoogle Scholar
  4. Bascou J, Tommasi A, Mainprice D (2002) Plastic deformation and development of clinopyroxene lattice preferred orientations in eclogites. J Struct Geol 24:1357–1368. doi: 10.1016/S0191-8141(01)00137-7 CrossRefGoogle Scholar
  5. Bellaiche L, Vanderbilt D (2000) Virtual crystal approximation revisited: application to dielectric and piezoelectric properties of perovskites. Phys Rev B 61:7877–7882. doi: 10.1103/PhysRevB.61.7877 CrossRefGoogle Scholar
  6. Bhagat SS, Bass JD, Smyth JR (1992) Single-crystal elastic properties of omphacite-C2/c by Brillouin spectroscopy. J Geophys Res 97:6843–6848. doi: 10.1029/92JB00030 CrossRefGoogle Scholar
  7. Boffa Ballaran T, Carpenter MA, Domeneghetti MC, Tazzoli V (1998) Structural mechanisms of solid solution and cation ordering in augite–jadeite pyroxenes: I. A macroscopic perspective. Am Mineral 83:419–433Google Scholar
  8. Brenker FE, Prior DJ, Müller WF (2002) Cation ordering in omphacite and effect on deformation mechanism and lattice preferred orientation (LPO). J Struct Geol 24:1991–2005. doi: 10.1016/S0191-8141(02)00010-X CrossRefGoogle Scholar
  9. Browaeys JT, Chevrot S (2004) Decomposition of the elastic tensor and geophysical applications. Geophys J Int 159:667–678. doi: 10.1111/j.1365-246X.2004.02415.x CrossRefGoogle Scholar
  10. Burton BP, Davidson PM (1988) Short-range order and frustration in omphacite: comparison of three CVM approximations. Phys Chem Miner 15:570–578. doi: 10.1007/BF00311028 CrossRefGoogle Scholar
  11. Carpenter MA (1978) Kinetic control of ordering and exsolution in omphacite. Contrib Mineral Petrol 67:17–24. doi: 10.1007/BF00371629 CrossRefGoogle Scholar
  12. Carpenter MA (1980) Mechanisms of exsolution in sodic pyroxenes. Contrib Mineral Petrol 71:289–300. doi: 10.1007/BF00371671 CrossRefGoogle Scholar
  13. Collins MD, Brown JM (1998) Elasticity of an upper mantle clinopyroxene. Phys Chem Miner 26:7–13. doi: 10.1007/s002690050156 CrossRefGoogle Scholar
  14. Cynn H, Anderson OL, Nicol M (1993) Effects of cation disordering in a natural MgAl2O4 spinel observed by rectangular parallelepiped ultrasonic resonance and Raman measurements. Pure Appl Geophys 141:415–444. doi: 10.1007/BF00998338 CrossRefGoogle Scholar
  15. D’Arco P, Mustapha S, Ferrabone M et al (2013) Symmetry and random sampling of symmetry independent configurations for the simulation of disordered solids. J Phys Condens Matter 25:355401. doi: 10.1088/0953-8984/25/35/355401 CrossRefGoogle Scholar
  16. Dick BG, Overhauser AW (1958) Theory of the dielectric constants of alkali halide crystals. Phys Rev 112:90–103. doi: 10.1103/PhysRev.112.90 CrossRefGoogle Scholar
  17. Erba A, Mahmoud A, Orlando R, Dovesi R (2014) Elastic properties of six silicate garnet end members from accurate ab initio simulations. Phys Chem Miner 41:151–160. doi: 10.1007/s00269-013-0630-4 CrossRefGoogle Scholar
  18. Faulkner J, Stocks G (1980) Calculating properties with the coherent-potential approximation. Phys Rev B 21:3222–3244. doi: 10.1103/PhysRevB.21.3222 CrossRefGoogle Scholar
  19. Gale JD (1997) GULP: a computer program for the symmetry-adapted simulation of solids. J Chem Soc Faraday Trans 93:629–637. doi: 10.1039/A606455H CrossRefGoogle Scholar
  20. Gale JD, Rohl AL (2003) The General Utility Lattice Program (GULP). Mol Simul 29:291–341. doi: 10.1080/0892702031000104887 CrossRefGoogle Scholar
  21. Giannozzi P, Baroni S, Bonini N et al (2009) QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys Condens Matter 21:395502. doi: 10.1088/0953-8984/21/39/395502 CrossRefGoogle Scholar
  22. Hazen RM, Yang H (1999) Effects of cation substitution and order-disorder on P–V–T equations of state of cubic spinels. Am Mineral 84:1956–1960Google Scholar
  23. Herzberg C (1995) Phase equilibria of common rocks in the crust and mantle. In: Ahrens TJ (ed) AGU Ref. Shelf. American Geophysical Union, Washington, pp 166–177Google Scholar
  24. Hill R (1952) The elastic behaviour of a crystalline aggregate. Proc Phys Soc Sect A 65:349. doi: 10.1088/0370-1298/65/5/307 CrossRefGoogle Scholar
  25. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:B864–B871. doi: 10.1103/PhysRev.136.B864 CrossRefGoogle Scholar
  26. Irifune T, Ringwood AE (1987) Phase transformations in a harzburgite composition to 26 GPa: implications for dynamical behaviour of the subducting slab. Earth Planet Sci Lett 86:365–376. doi: 10.1016/0012-821X(87)90233-0 CrossRefGoogle Scholar
  27. Irifune T, Ringwood AE (1993) Phase transformations in subducted oceanic crust and buoyancy relationships at depths of 600–800 km in the mantle. Earth Planet Sci Lett 117:101–110. doi: 10.1016/0012-821X(93)90120-X CrossRefGoogle Scholar
  28. Irifune T, Sekine T, Ringwood AE, Hibberson WO (1986) The eclogite–garnetite transformation at high pressure and some geophysical implications. Earth Planet Sci Lett 77:245–256. doi: 10.1016/0012-821X(86)90165-2 CrossRefGoogle Scholar
  29. Isaak DG, Ohno I, Lee PC (2006) The elastic constants of monoclinic single-crystal chrome-diopside to 1300 K. Phys Chem Miner 32:691–699. doi: 10.1007/s00269-005-0047-9 CrossRefGoogle Scholar
  30. Kandelin J, Weidner DJ (1988) The single-crystal elastic properties of jadeite. Phys Earth Planet Inter 50:251–260. doi: 10.1016/0031-9201(88)90106-9 CrossRefGoogle Scholar
  31. Karki BB, Wentzcovitch RM, de Gironcoli S, Baroni S (1999) First-principles determination of elastic anisotropy and wave velocities of MgO at lower mantle conditions. Science 286:1705–1707. doi: 10.1126/science.286.5445.1705 CrossRefGoogle Scholar
  32. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133–A1138. doi: 10.1103/PhysRev.140.A1133 CrossRefGoogle Scholar
  33. Lacivita V, Erba A, Dovesi R, D’Arco P (2014) Elasticity of grossular–andradite solid solution: an ab initio investigation. Phys Chem Chem Phys 16:15331–15338. doi: 10.1039/C4CP01597E CrossRefGoogle Scholar
  34. Laks D, Ferreira L, Froyen S, Zunger A (1992) Efficient cluster expansion for substitutional systems. Phys Rev B 46:12587–12605. doi: 10.1103/PhysRevB.46.12587 CrossRefGoogle Scholar
  35. Levien L, Prewitt CT (1981) High-pressure structural study of diopside. Am Mineral 66:315–323Google Scholar
  36. Levien L, Weidner DJ, Prewitt CT (1979) Elasticity of diopside. Phys Chem Miner 4:105–113. doi: 10.1007/BF00307555 CrossRefGoogle Scholar
  37. Li B, Neuville DR (2010) Elasticity of diopside to 8 GPa and 1073 K and implications for the upper mantle. Phys Earth Planet Inter 183:398–403. doi: 10.1016/j.pepi.2010.08.009 CrossRefGoogle Scholar
  38. Li L, Carrez P, Weidner D (2007a) Effect of cation ordering and pressure on spinel elasticity by ab initio simulation. Am Mineral 92:174–178. doi: 10.2138/am.2007.2210 CrossRefGoogle Scholar
  39. Li L, Weidner DJ, Brodholt J, Price GD (2007b) The effect of cation-ordering on the elastic properties of majorite: an ab initio study. Earth Planet Sci Lett 256:28–35. doi: 10.1016/j.epsl.2007.01.008 CrossRefGoogle Scholar
  40. Li B, Kung J, Liu W, Liebermann RC (2014) Phase transition and elasticity of enstatite under pressure from experiments and first-principles studies. Phys Earth Planet Inter 228:63–74. doi: 10.1016/j.pepi.2013.11.009 CrossRefGoogle Scholar
  41. Luo F, Cheng Y, Cai L-C, Chen X-R (2013) Structure and thermodynamic properties of BeO: empirical corrections in the quasiharmonic approximation. J Appl Phys 113:033517. doi: 10.1063/1.4776679 CrossRefGoogle Scholar
  42. Mainprice D (2007) Seismic anisotropy of the deep earth from a mineral and rock physics perspective. In: Price GD (ed) Treatise on geophysics, vol 2. Mineral physics. Elsevier, Amsterdam, pp 437–491CrossRefGoogle Scholar
  43. Mainprice D, Bascou J, Cordier P, Tommasi A (2004) Crystal preferred orientations of garnet: comparison between numerical simulations and electron back-scattered diffraction (EBSD) measurements in naturally deformed eclogites. J Struct Geol 26:2089–2102. doi: 10.1016/j.jsg.2004.04.008 CrossRefGoogle Scholar
  44. Matsui M, Busing WR (1984) Calculation of the elastic constants and high-pressure properties of diopside, CaMgSi2O6. Am Mineral 69:1090–1095Google Scholar
  45. Mauler A, Burlini L, Kunze K et al (2000) P-wave anisotropy in eclogites and relationship to the omphacite crystallographic fabric. Phys Chem Earth Part Solid Earth Geod 25:119–126. doi: 10.1016/S1464-1895(00)00020-X CrossRefGoogle Scholar
  46. Mauler A, Godard G, Kunze K (2001) Crystallographic fabrics of omphacite, rutile and quartz in Vendée eclogites (Armorican Massif, France). Consequences for deformation mechanisms and regimes. Tectonophysics 342:81–112. doi: 10.1016/S0040-1951(01)00157-3 CrossRefGoogle Scholar
  47. Moakher M, Norris AN (2006) The closest elastic tensor of arbitrary symmetry to an elasticity tensor of lower symmetry. J Elast 85:215–263. doi: 10.1007/s10659-006-9082-0 CrossRefGoogle Scholar
  48. Momma K, Izumi F (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystallogr 44:1272–1276. doi: 10.1107/S0021889811038970 CrossRefGoogle Scholar
  49. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188–5192. doi: 10.1103/PhysRevB.13.5188 CrossRefGoogle Scholar
  50. Mustapha S, D’Arco P, Pierre MDL et al (2013) On the use of symmetry in configurational analysis for the simulation of disordered solids. J Phys Condens Matter 25:105401. doi: 10.1088/0953-8984/25/10/105401 CrossRefGoogle Scholar
  51. O’Neill B, Bass JD, Smyth JR, Vaughan MT (1989) Elasticity of a grossular–pyrope–almandine garnet. J Geophys Res Solid Earth 94:17819–17824. doi: 10.1029/JB094iB12p17819 CrossRefGoogle Scholar
  52. Oganov AR, Brodholt JP, Price GD (2001) Ab initio elasticity and thermal equation of state of MgSiO3 perovskite. Earth Planet Sci Lett 184:555–560. doi: 10.1016/S0012-821X(00)00363-0 CrossRefGoogle Scholar
  53. Otero-de-la-Roza A, Luaña V (2011a) Treatment of first-principles data for predictive quasiharmonic thermodynamics of solids: the case of MgO. Phys Rev B 84:024109. doi: 10.1103/PhysRevB.84.024109 CrossRefGoogle Scholar
  54. Otero-de-la-Roza A, Luaña V (2011b) Equations of state and thermodynamics of solids using empirical corrections in the quasiharmonic approximation. Phys Rev B 84:184103. doi: 10.1103/PhysRevB.84.184103 CrossRefGoogle Scholar
  55. Otero-de-la-Roza A, Abbasi-Pérez D, Luaña V (2011) Gibbs2: a new version of the quasiharmonic model code. II. Models for solid-state thermodynamics, features and implementation. Comput Phys Commun 182:2232–2248. doi: 10.1016/j.cpc.2011.05.009 CrossRefGoogle Scholar
  56. Pandolfo F, Cámara F, Domeneghetti MC et al (2014) Volume thermal expansion along the jadeite–diopside join. Phys Chem Miner. doi: 10.1007/s00269-014-0694-9 Google Scholar
  57. Panero WR (2008) Cation disorder in ringwoodite and its effects on wave speeds in the Earth’s transition zone. J Geophys Res Solid Earth 113:B10204. doi: 10.1029/2008JB005676 CrossRefGoogle Scholar
  58. Pavese A, Bocchio R, Ivaldi G (2000) In situ high temperature single crystal X-ray diffraction study of a natural omphacite. Mineral Mag 64:983–993CrossRefGoogle Scholar
  59. Pavese A, Diella V, Levy D, Hanfland M (2001) Synchrotron X-ray powder diffraction study of natural P2/n-omphacites at high-pressure conditions. Phys Chem Miner 28:9–16. doi: 10.1007/s002690000128 CrossRefGoogle Scholar
  60. Peacock SM, Wang K (1999) Seismic consequences of warm versus cool subduction metamorphism: examples from southwest and northeast Japan. Science 286:937–939. doi: 10.1126/science.286.5441.937 CrossRefGoogle Scholar
  61. Peacock SM, van Keken PE, Holloway SD et al (2005) Thermal structure of the Costa Rica–Nicaragua subduction zone. Phys Earth Planet Inter 149:187–200. doi: 10.1016/j.pepi.2004.08.030 CrossRefGoogle Scholar
  62. Perdew JP (1991) Unified theory of exchange and correlation beyond the local density approximation. In: Ziesche P, Eschrig H (eds) Electronic structure of solids '91. Akademie Verlag, Berlin, pp 11–20Google Scholar
  63. Perdew JP, Chevary JA, Vosko SH et al (1992) Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys Rev B 46:6671–6687. doi: 10.1103/PhysRevB.46.6671 CrossRefGoogle Scholar
  64. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868. doi: 10.1103/PhysRevLett.77.3865 CrossRefGoogle Scholar
  65. Perger WF, Criswell J, Civalleri B, Dovesi R (2009) Ab-initio calculation of elastic constants of crystalline systems with the CRYSTAL code. Comput Phys Commun 180:1753–1759. doi: 10.1016/j.cpc.2009.04.022 CrossRefGoogle Scholar
  66. Ranganathan SI, Ostoja-Starzewski M (2008) Universal elastic anisotropy index. Phys Rev Lett 101:055504. doi: 10.1103/PhysRevLett.101.055504 CrossRefGoogle Scholar
  67. Rossi G, Smith DC, Ungaretti L, Domeneghetti MC (1983) Crystal-chemistry and cation ordering in the system diopside–jadeite: a detailed study by crystal structure refinement. Contrib Mineral Petrol 83:247–258. doi: 10.1007/BF00371193 CrossRefGoogle Scholar
  68. Saha S, Zwanziger JW (2014) Elastic properties of ternary (Alx, Mg1−x)Sc random alloys from first principles methods. J Alloys Compd 610:138–142. doi: 10.1016/j.jallcom.2014.04.102 CrossRefGoogle Scholar
  69. Sang L, Bass JD (2014) Single-crystal elasticity of diopside to 14 GPa by Brillouin scattering. Phys Earth Planet Inter 228:75–79. doi: 10.1016/j.pepi.2013.12.011 CrossRefGoogle Scholar
  70. Sondergeld P, Li B, Schreuer J, Carpenter MA (2006) Discontinuous evolution of single-crystal elastic constants as a function of pressure through the C2/c ↔ P21/c phase transition in spodumene (LiAlSi2O6). J Geophys Res Solid Earth 111:B07202. doi: 10.1029/2005JB004098 CrossRefGoogle Scholar
  71. Stackhouse S, Brodholt JP, Wookey J et al (2005) The effect of temperature on the seismic anisotropy of the perovskite and post-perovskite polymorphs of MgSiO3. Earth Planet Sci Lett 230:1–10. doi: 10.1016/j.epsl.2004.11.021 CrossRefGoogle Scholar
  72. Syracuse EM, van Keken PE, Abers GA (2010) The global range of subduction zone thermal models. Phys Earth Planet Inter 183:73–90. doi: 10.1016/j.pepi.2010.02.004 CrossRefGoogle Scholar
  73. Tasnádi F, Odén M, Abrikosov IA (2012) Ab initio elastic tensor of cubic Ti0.5Al0.5 N alloys: dependence of elastic constants on size and shape of the supercell model and their convergence. Phys Rev B 85:144112. doi: 10.1103/PhysRevB.85.144112 CrossRefGoogle Scholar
  74. Ulrich S, Mainprice D (2005) Does cation ordering in omphacite influence development of lattice-preferred orientation? J Struct Geol 27:419–431. doi: 10.1016/j.jsg.2004.11.003 CrossRefGoogle Scholar
  75. Van de Walle A (2008) A complete representation of structure–property relationships in crystals. Nat Mater 7:455–458. doi: 10.1038/nmat2200 CrossRefGoogle Scholar
  76. Van de Walle A (2009) Multicomponent multisublattice alloys, nonconfigurational entropy and other additions to the Alloy Theoretic Automated Toolkit. Calphad 33:266–278. doi: 10.1016/j.calphad.2008.12.005 CrossRefGoogle Scholar
  77. Van de Walle A, Ceder G (1999) Correcting overbinding in local-density-approximation calculations. Phys Rev B 59:14992–15001. doi: 10.1103/PhysRevB.59.14992 CrossRefGoogle Scholar
  78. Van de Walle A, Asta M, Ceder G (2002) The alloy theoretic automated toolkit: a user guide. Calphad 26:539–553. doi: 10.1016/S0364-5916(02)80006-2 CrossRefGoogle Scholar
  79. Van de Walle A, Tiwary P, de Jong M et al (2013) Efficient stochastic generation of special quasirandom structures. Calphad 42:13–18. doi: 10.1016/j.calphad.2013.06.006 CrossRefGoogle Scholar
  80. Vanderbilt D (1990) Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys Rev B 41:7892–7895. doi: 10.1103/PhysRevB.41.7892 CrossRefGoogle Scholar
  81. Vanderbilt D (1998) First-principles theory of structural phase transitions in cubic perovskites. J Korean Phys Soc 32:S103–S106Google Scholar
  82. Vinograd VL (2002a) Thermodynamics of mixing and ordering in the diopside–jadeite system: I. A CVM model. Mineral Mag 66:513–536. doi: 10.1180/0026461026640046 CrossRefGoogle Scholar
  83. Vinograd VL (2002b) Thermodynamics of mixing and ordering in the diopside–jadeite system: II. A polynomial fit to the CVM results. Mineral Mag 66:537–545. doi: 10.1180/0026461026640047 CrossRefGoogle Scholar
  84. Vinograd VL, Sluiter MHF, Winkler B, Putnis A, Gale JD (2004) Thermodynamics of mixing and ordering in silicates and oxides from static lattice energy and ab initio calculations. In: Warren M, Oganov A, Winkler B (eds) First-principles simulations: perspectives and challenges in mineral sciences (Deutsche Gesellschaft fur Kristallographie. Berichte aus Arbeitskreisen der DFK) 14, pp 143–151Google Scholar
  85. Vinograd VL, Winkler B, Putnis A et al (2006) Thermodynamics of pyrope–majorite, Mg3Al2Si3O12–Mg4Si4O12, solid solution from atomistic model calculations. Mol Simul 32:85–99. doi: 10.1080/08927020500501599 CrossRefGoogle Scholar
  86. Vinograd VL, Gale JD, Winkler B (2007) Thermodynamics of mixing in diopside–jadeite, CaMgSi2O6–NaAlSi2O6, solid solution from static lattice energy calculations. Phys Chem Miner 34:713–725. doi: 10.1007/s00269-007-0189-z CrossRefGoogle Scholar
  87. Walker AM (2012) The effect of pressure on the elastic properties and seismic anisotropy of diopside and jadeite from atomic scale simulation. Phys Earth Planet Inter 192–193:81–89. doi: 10.1016/j.pepi.2011.10.002 CrossRefGoogle Scholar
  88. Walker AM, Wookey J (2012) MSAT—a new toolkit for the analysis of elastic and seismic anisotropy. Comput Geosci 49:81–90. doi: 10.1016/j.cageo.2012.05.031 CrossRefGoogle Scholar
  89. Walker AM, Tyer RP, Bruin RP, Dove MT (2008) The compressibility and high pressure structure of diopside from first principles simulation. Phys Chem Miner 35:359–366. doi: 10.1007/s00269-008-0229-3 CrossRefGoogle Scholar
  90. Wentzcovitch RM, Martins JL, Price GD (1993) Ab initio molecular dynamics with variable cell shape: application to MgSiO3. Phys Rev Lett 70:3947–3950. doi: 10.1103/PhysRevLett.70.3947 CrossRefGoogle Scholar
  91. Wentzcovitch RM, Ross NL, Price GD (1995) Ab initio study of MgSiO3 and CaSiO3 perovskites at lower-mantle pressures. Phys Earth Planet Inter 90:101–112. doi: 10.1016/0031-9201(94)03001-Y CrossRefGoogle Scholar
  92. Xie M-Y, Tasnádi F, Abrikosov IA et al (2012) Elastic constants, composition, and piezolectric polarization in InxAl1−xN: from ab initio calculations to experimental implications for the applicability of Vegard’s rule. Phys Rev B 86:155310. doi: 10.1103/PhysRevB.86.155310 CrossRefGoogle Scholar
  93. Zhang J, Green HW (2007) Experimental investigation of eclogite rheology and its fabrics at high temperature and pressure. J Metamorph Geol 25:97–115. doi: 10.1111/j.1525-1314.2006.00684.x CrossRefGoogle Scholar
  94. Zhou L, Holec D, Mayrhofer PH (2013) First-principles study of elastic properties of cubic Cr1−xAlxN alloys. J Appl Phys 113:043511. doi: 10.1063/1.4789378 CrossRefGoogle Scholar
  95. Zunger A, Wei S-H, Ferreira LG, Bernard JE (1990) Special quasirandom structures. Phys Rev Lett 65:353–356. doi: 10.1103/PhysRevLett.65.353 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Research School of Earth SciencesAustralian National UniversityCanberraAustralia
  2. 2.School of Earth SciencesUniversity of BristolBristolUK
  3. 3.School of Earth and EnvironmentUniversity of LeedsLeedsUK

Personalised recommendations