Advertisement

Physics and Chemistry of Minerals

, Volume 42, Issue 3, pp 213–222 | Cite as

Elastic wave velocity of polycrystalline Mj80Py20 garnet to 21 GPa and 2,000 K

  • Zhaodong LiuEmail author
  • Tetsuo Irifune
  • Steeve Gréaux
  • Takeshi Arimoto
  • Toru Shinmei
  • Yuji Higo
Original Paper

Abstract

The elastic wave velocities of polycrystalline Mj80Py20 garnet along the majorite–pyrope system have been measured at pressures up to 21 GPa and temperatures up to 2,000 K using ultrasonic interferometry in conjunction with in situ X-ray diffraction techniques in a Kawai-type multi-anvil apparatus. The elastic moduli of Mj80Py20 garnet and their pressure and temperature derivatives are determined by a two-dimensional linear fitting of the present experimental data, yielding: K S = 161.5 (7) GPa, ∂K S/∂P = 4.42 (4), ∂K S/∂T = −0.0154 (2) GPa/K, G = 86.2 (2) GPa, ∂G/∂P = 1.28 (1), ∂G/∂T = −0.0096 (5) GPa/K. The present results together with those of the studies on the majorite–pyrope solid solutions suggest the pressure and temperature derivatives of elastic moduli are insensitive to the majorite content in the majorite–pyrope system. The velocity gradients of the majoritic garnets in the majorite–pyrope system are 3 ~ 6 times lower than those required to account for the high seismic velocity gradients observed in the mantle transition zone.

Keywords

Garnet Elastic wave velocity Elastic moduli Velocity gradients 

Notes

Acknowledgments

The authors are grateful to H. Ohfuji and M. Nishi for their helps in FE-SEM observations. We thank C. Zhou, T. Kunimoto, Y. Tange, N. Cai, W. Du, and X. Wang for their experimental technical assistances and valuable discussions. We appreciate Y. Nishihara for his help in FTIR measurements. We are also grateful for constructive reviews by Dr. C. McCammon and two anonymous reviewers. The present study is supported by the Grant-in-Aid for Scientific Research (S) by JSPS to T. Irifune (Grant No. 25220712).

References

  1. Akaogi M, Akimoto S (1977) Pyroxene-garnet solid solution equilibria in the systems Mg4Si4O12-Mg3Al2Si3O12 and at high pressures and temperatures. Phys Earth Planet Inter 15:90–106CrossRefGoogle Scholar
  2. Akaogi M, Tanaka A, Ito E (2002) Garnet–ilmenite–perovskite transitions in the system Mg4Si4O12-Mg3Al2Si3O12 at high pressures and high temperatures: phase equilibria, calorimetry and implications for mantle structure. Phys Earth Planet Inter 132:303–324CrossRefGoogle Scholar
  3. Bass JD, Anderson DL (1984) Composition of the upper mantle: geophysical tests of two petrological models. Geophys Rev Lett 11:237–240CrossRefGoogle Scholar
  4. Bass DJ, Kanzaki M (1990) Elasticity of majorite-pyrope solid solution. Geophys Res Lett 17:1989–1992CrossRefGoogle Scholar
  5. Brown JM, Shankland TJ (1981) Thermodynamic parameters in the Earth as determined from seismic profiles. Geophys J R Astr Soc 66:579–596CrossRefGoogle Scholar
  6. Coleman LC (1977) Ringwoodite and majorite in the Catherwood meteorite. Can Mineral 15:97–101Google Scholar
  7. Davis GF, Dziewonski AM (1975) Homogeneity and constitution of the Earth’s lower mantle and outer core. Phys Earth Planet Inter 10:336–343CrossRefGoogle Scholar
  8. Dziewonski AM, Anderson DL (1981) Preliminary reference Earth model. Phys Earth Planet Inter 25:297–356CrossRefGoogle Scholar
  9. Gasparik T (1990) Phase relations in the transition zone. J Geophys Res 95:15751–15769CrossRefGoogle Scholar
  10. Gasparik T (1992) Melting experiments on the enstatite-pyrope join at 80–152 Kbar. J Geophys Res 97:15181–15188CrossRefGoogle Scholar
  11. Gwanmesia GD, Chen G, Liebermann RC (1998) Sound velocities in MgSiO3-garnet to 8 GPa. Geophys Res Lett 25:4553–4556CrossRefGoogle Scholar
  12. Gwanmesia GD, Liu J, Chen G, Kesson S, Rigden SM, Liebermann RC (2000) Elasticity of pyrope (Mg3Al2Si3O12)—majorite (Mg4Si4O12) garnet solid solution. Phys Chem Miner 27:445–452CrossRefGoogle Scholar
  13. Gwanmesia GD, Zhang J, Darling K, Kung J, Li B, Wang L, Neuville D, Liebermann RC (2006) Elasticity of Polycrystalline Pyrope (Mg3Al2Si3O12) to 9 GPa and 1000°C. Phys Earth Planet Inter 155:179–190CrossRefGoogle Scholar
  14. Gwanmesia GD, Wang L, Heady A, Liebermann RC (2009) Pressure and temperature dependence of the elasticity of pyrope-majorite [Py60Mj40 and Py50Mj50] garnets solid solution measured by ultrasonic interferometry technique. Phys Earth Planet Inter 174:105–112CrossRefGoogle Scholar
  15. Gwanmesia GD, Wang L, Heady A, Liebermann RC (2013) Elasticity and sound velocities of polycrystalline grossular garnet (Ca3Al2Si3O12) at simultaneous high pressures and high temperatures. Phys Earth Planet Inter 228:80–87CrossRefGoogle Scholar
  16. Heinemann S, Sharp TG, Seifert F, Rubie DC (1997) The cubic-tetragonal phase transition in the system majorite (Mg4Si4O12)—pyrope (Mg3Al2Si3O12) and garnet symmetry in the earth’s transition zone. Phys Chem Miner 24:206–221CrossRefGoogle Scholar
  17. Higo Y, Inoue T, Irifune T, Funakoshi K-I, Li B (2008) Elastic wave velocities of (Mg0.91Fe0.09)2SiO4 ringwoodite under P-T conditions of the mantle transition region. Phys Earth Planet Inter 166:67–174CrossRefGoogle Scholar
  18. Higo Y, Kono Y, Inoue T, Irifune T, Funakoshi K-I (2009) A system for measuring elastic wave velocity under high pressure and high temperature using a combination of ultrasonic measurement and the multi-anvil apparatus at SPring-8. J Synchrotron Radia 16:762–768CrossRefGoogle Scholar
  19. Hirose K, Fei Y, Ma Y, Mao H-K (1999) The fate of subducted basaltic crust in the Earth’s lower mantle. Nature 397:53–56CrossRefGoogle Scholar
  20. Irifune T, Isshiki M (1998) Iron partitioning in a pyrolite mantle and the nature of the 410-km seismic discontinuity. Nature 392:702–705CrossRefGoogle Scholar
  21. Irifune T, Ringwood AE (1987) Phase transformations in primitive MORB and pyrolite compositions to 25 GPa and some geophysical implications. In: Manghnani MH, Syono Y (eds) High pressure research in mineral physics. Terra Scientific, Tokyo, pp 231–242Google Scholar
  22. Irifune T, Ringwood AE (1993) Phase transformations in subducted oceanic crust and buoyancy relationships at depths of 600–800 km in the mantle. Earth Planet Sci Lett 117:101–110CrossRefGoogle Scholar
  23. Irifune T, Sekine T, Ringwood AE, Hibberson WO (1986) The eclogite-garnetite transformation at high pressure and some geophysical implications. Earth Planet Sci Lett 77:245–256CrossRefGoogle Scholar
  24. Irifune T, Koizumi T, Ando J (1996) An experimental study of the garnet-perovskite transformation in the system MgSiO3-Mg3Al2Si3O12. Phys Earth Planet Inter 96:147–157CrossRefGoogle Scholar
  25. Irifune T, Higo Y, Inoue T, Kono Y, Ohfuji H, Funakoshi K (2008) Sound velocities of majorite garnet and the composition of the mantle transition region. Nature 451:814–817CrossRefGoogle Scholar
  26. Kavner A, Sinogeikin SV, Jeanloz R, Bass JD (2000) Equation of state and strength of natural majorite. J Geophys Res 105:5963–5971CrossRefGoogle Scholar
  27. Kennett BL, Engdahl ER (1991) Traveltimes for global earthquake location and phase identification. Geophys J Int 105:429–465CrossRefGoogle Scholar
  28. Kono Y, Irifune T, Higo Y, Inoue T, Barnhoorn A (2010a) P-V–T relation of MgO derived by simultaneous elastic wave velocity and in situ X-ray measurements: a new pressure scale for the mantle transition region. Phys Earth Planet Int 183:196–211CrossRefGoogle Scholar
  29. Kono Y, Gréaux S, Higo Y, Ohfuji H, Irifune T (2010b) Pressure and temperature dependences of elastic properties of grossular garnet up to 17 GPa and 1650 K. J Earth Sci 21:782CrossRefGoogle Scholar
  30. Kono Y, Irifune T, Ohfuji H, Higo Y, Funakoshi K-I (2012) Sound velocities of MORB and absence of a basaltic layer in the mantle transition region. Geophys Res Lett 39:L24306CrossRefGoogle Scholar
  31. Kubo A, Akaogi M (2000) Post-garnet transitions in the system Mg4Si4O12–Mg3Al2Si3O12 up to 28 GPa: phase relations of garnet, ilmenite and perovskite. Phys Earth Planet Int 121:85–102CrossRefGoogle Scholar
  32. Larson AC, Von Dreele RB (2000) GSAS general structure analysis system operation manual. Los Alamos Natl Lab LAUR 86–748:1–179Google Scholar
  33. Le Bail A, Duroy H, Fourquet JL (1988) Ab initio structure determination of LiSbWO6 by X-ray powder diffraction. Mater Res Bull 23:447–452CrossRefGoogle Scholar
  34. Li B, Liebermann RC (2007) Indoor seismology by probing the Earth’s interior by using sound velocity measurements at high pressures and temperatures. Proc Natl Acad Sci USA 104:9145–9150CrossRefGoogle Scholar
  35. Li B, Jackson I, Gasparik T, Liebermann RC (1996) Elastic wave velocity measurement in multi-anvil apparatus to 10 GPa using ultrasonic interferometry. Phys Earth Planet Inter 98:79–91CrossRefGoogle Scholar
  36. Li B, Liebermann RC, Weidner DJ (1998) Elastic Moduli of Wadsleyite (β-Mg2SiO4) to 7 Gigapascals and 873 Kelvin. Science 281:675–676CrossRefGoogle Scholar
  37. Li B, Liebermann RC, Weidner DJ (2001) P-V-VP-VS-T measurements on wadsleyite to 7 GPa and 873 K: implications for the 410-km seismic discontinuity. J Geophys Res 106:30575–30591Google Scholar
  38. Li B, Chen K, Kung J, Liebermann RC, Weidner DJ (2002) Ultrasonic measurement using transfer function method. J Phys Cond Matter 14:11337–11342CrossRefGoogle Scholar
  39. Li B, Kung J, Liebermann RC (2004) Modern techniques in measuring elasticity of Earth materials at high pressure and high temperature using ultrasonic interferometry in conjunction with synchrotron X-radiation in multi-anvil apparatus. Phys Earth Planet Int 143–144:559–574CrossRefGoogle Scholar
  40. Liu J, Chen G, Gwanmesia G, Liebermann RC (2000) Elastic wave velocities of pyrope–majorite garnets (Py62Mj38 and Py50Mj50) to 9 GPa. Phys Earth Planet Int 120:153–163CrossRefGoogle Scholar
  41. Mao H-K, Bell PM, Boctor NZ (1982) The mineral chemistry of majorite in L6 chondrites. Carnegie Inst Washington Year b 81:279–281Google Scholar
  42. Meyer HOA (1987) Inclusions in diamond. In: Nixon PH (ed) Mantle Xenoliths. JohnWiley & Sons Ltd, Chichester, pp 501–522Google Scholar
  43. Moore RO, Gurney JJ (1985) Pyroxene solid solution in garnets included in diamond. Nature 318:553–555CrossRefGoogle Scholar
  44. Morishima H, Ohtani E, Kato T, Kubo T, Suzuki A, Kikegawa T, Shimomura O (1999) The high-pressure and temperature equation of state of a majorite solid solution in the system of Mg4Si4O12-Mg3Al2Si3O12. Phys Chem Mineral 27:3–10CrossRefGoogle Scholar
  45. Murakami M, Sinogeikin SV, Litasov K, Ohtani E, Bass JD (2008) Single-crystal elasticity of iron-bearing majorite to 26 GPa: implications for seismic velocity structure of the mantle transition zone. Earth Planet Sci Lett 274:339–345CrossRefGoogle Scholar
  46. Ono S, Ito E, Katsura T (2001) Mineralogy of subducted basaltic crust (MORB) from 25 to 37 GPa, and chemical heterogeneity of the lower mantle. Earth Planet Sci Lett 190:57–63CrossRefGoogle Scholar
  47. Pacalo REG, Weidner DJ (1997) Elasticity of majorite, MgSiO3 tetragonal garnet. Phys Earth Planet Int 99:145–154CrossRefGoogle Scholar
  48. Parise JB, Wang Y, Gwanmesia GD, Zhang J, Sinelnikov Y, Chmielowski J, Weidner DJ, Liebermann RC (1996) The symmetry of garnets on the pyrope (Mg3Al2Si3O12)—majorite (MgSiO3) join. Geophys Res Lett 23:3799–3802CrossRefGoogle Scholar
  49. Rigden SM, Gwanmesia GD, Liebermann RC (1994) Elastic wave velocities of a pyrope-majorite garnet to 3 GPa. Phys Earth Planet Int 86:35–44CrossRefGoogle Scholar
  50. Ringwood AE, Major A (1971) Synthesis of majorite and other high pressure garnets and perovskites. Earth Planet Sci Lett 12:411–418CrossRefGoogle Scholar
  51. Sinogeikin SV, Bass JD (2002a) Elasticity of Majorite and Majorite-Pyrope solid solution to high pressure: Implicaitions for the Transition Zone. Geophys Res Lett 29:2453–2456CrossRefGoogle Scholar
  52. Sinogeikin SV, Bass JD (2002b) Elasticity of pyrope and majorite-pyrope solid solutions to high temperatures. Earth Planet Sci Lett 203:549–555CrossRefGoogle Scholar
  53. Sinogeikin SV, Bass JD, OʼNeill B, Gasparik T (1997) Elasticity of tetragonal end-member majorite and solid solution in the system Mg4Si4O12-Mg3Al2Si3O12. Phys Chem Miner 24:115–121CrossRefGoogle Scholar
  54. Toby BH (2001) EXPGUI, a graphical user interface for GSAS. J Appl Crystallogr 34:210–213CrossRefGoogle Scholar
  55. Tsuchiya T (2003) First-principles prediction of the P–V–T equation of state of gold and the 660-km discontinuity in Earth’s mantle. J Geophys Res 108(B10):2462CrossRefGoogle Scholar
  56. Wang Y, Weidner DJ, Zhang J, Gwanmesia GD, Liebermann RC (1998) Thermal equation of state of garnets along the pyrope-majorite join. Phys Earth Planet Int 105:59–71CrossRefGoogle Scholar
  57. Yagi T, Uchiyama Y, Akaogi M, Ito E (1992) Isothermal compression of MgSiO3 tetragonal garnet. Phys Earth Planet Int 74:1–7CrossRefGoogle Scholar
  58. Yeganeh-Haeri A, Weidner DJ, Ito E (1990) Elastic properties of the pyrope-majorite solid solution series. Geophys Res Lett 17:2453–2456CrossRefGoogle Scholar
  59. Zhou C, Gréaux S, Nishiyama N, Irifune T, Higo Y (2013a) Sound velocities measurement on MgSiO3 akimotoite at high pressures and high temperatures with simultaneous in situ X-ray diffraction and ultrasonic study. Phys Earth Planet Int 228:97–105CrossRefGoogle Scholar
  60. Zhou C, Gréaux S, Nishiyama N, Irifune T, Higo Y (2013b) Sound velocities measurement on MgSiO3 akimotoite at high pressures and high temperatures with simultaneous in situ X-ray diffraction and ultrasonic study. Phys Earth Planet Int 228:97–105, Reference thereinGoogle Scholar
  61. Zou Y, Irifune T, Gréaux S, Whitaker ML, Shinmei T, Ohfuji H, Negishi R, Higo Y (2012) Elasticity and sound velocities of polycrystalline Mg3Al2(SiO4)3 garnet up to 20 GPa and 1700 K. J Appl Phys 112:014910CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Zhaodong Liu
    • 1
    Email author
  • Tetsuo Irifune
    • 1
    • 2
  • Steeve Gréaux
    • 1
    • 2
  • Takeshi Arimoto
    • 1
  • Toru Shinmei
    • 1
  • Yuji Higo
    • 3
  1. 1.Geodynamics Research CenterEhime UniversityMatsuyamaJapan
  2. 2.Earth-Life Science InstituteTokyo Institute of TechnologyTokyoJapan
  3. 3.Japan Synchrotron Radiation InstituteHyogoJapan

Personalised recommendations