Advertisement

Physics and Chemistry of Minerals

, Volume 42, Issue 3, pp 191–201 | Cite as

Compressibility of carbonophosphate bradleyite Na3Mg(CO3)(PO4) by X-ray diffraction and Raman spectroscopy

  • Jing Gao
  • Weifeng Huang
  • Xiang Wu
  • Dawei Fan
  • Ziyu Wu
  • Dingguo Xia
  • Shan Qin
Original Paper

Abstract

Bradleyite Na3Mg(CO3)(PO4) is one typical carbonophosphate, representing dual properties of both carbonates and phosphates. Compressibility of bradleyite has been investigated using synchrotron radiation X-ray diffraction and Raman spectroscopy combined with diamond anvil cells up to 41 GPa at room temperature. Experimental results clearly demonstrate that bradleyite is stable in the investigated pressure conditions. Isothermal pressure–volume relationship has been fitted to the third-order Birch–Murnaghan equation of state with K 0 = 65.9(9) GPa, K 0  = 3.08(3) and V 0 = 301.4(4) Å3. The crystallographic axes exhibit similar and considerable compressibility up to ~16 GPa, but an increasing anisotropy can be defined thereafter because the b-axis becomes more and more rigid. Insight into the behaviors of [PO4]3− and [CO3]2− groups have been obtained using Raman spectroscopy, with the symmetrical stretching bands being observed at 970.8 and 1,078.7 cm−1, respectively. Both modes shift to higher frequencies on compression. The pressure coefficient of Raman shifts in C–O is 3.18(2) × 10−3 cm−1/GPa, and the value of Grüneisen parameters (γ) is ~0.22. [PO4]3− groups in bradleyite exhibit a mode hardening, with a slope of 3.54(6) × 10−3 cm−1/GPa, γ = ~0.24 below ~16 GPa, and of 2.37(1) × 10−3 cm−1/GPa, γ = ~0.16 thereafter. The mode hardening may indicate correlations to the increase in symmetry of the local environment around the [PO4] tetrahedra. The low γ values are compatible with the rigidness of [CO3]2− and [PO4]3− in bradleyite, which have, respectively, been documented in carbonates and phosphates. Our present study may open new perspectives on the Earth carbon and phosphorus cycle, arouse the interest in carbonophosphate minerals, and shed light on other [CO3]2− and [PO4]3− coexistent phases.

Keywords

Carbonates Phosphates Compressibility Diamond anvil cell 

Notes

Acknowledgments

The authors would like to thank Jie Zhu and Jin Liu for their assistances in experiments. This work was supported by Natural Science Foundation of China (Grant No. U1232204). Synchrotron works of the study were performed at HPCAT of the APS, ANL. HPCAT operations are supported by DOE-NNSA under Award No. DE-NA0001974 and DOE-BES under Award No. DE-FG02-99ER45775, with partial instrumentation funding by NSF. APS is supported by DOE-BES, under Contract No. DE-AC02-06CH11357.

References

  1. Angel RJ (2000) Equations of State. In: Hazen RM, Downs RT (eds) Reviews in mineralogy and geochemistry. Mineralogical Society of America, Chantilly, pp 35–39Google Scholar
  2. Annersten H, Nord AG (1980) A high pressure phase of magnesium orthophosphate. Acta Chem Scand Ser A 34:389–390CrossRefGoogle Scholar
  3. Biellmann C, Gillet P, Guyot F, Peyronneau J, Reynard B (1993) Experimental evidence for carbonate stability in the Earth’s lower mantle. Earth Planet Sci lett 118:31–41CrossRefGoogle Scholar
  4. Birch F (1947) Finite elastic strain of cubic crystals. Phys Rev Lett 71:809–924Google Scholar
  5. Boulard E, Menguy N, Auzende AL, Benzerara K, Bureau H, Antonangeli D, Corgne A, Morard G, Siebert J, Perrillat JP, Guyot F, Fiquet G (2012) Experimental investigation of the stability of Fe-rich carbonates in the lower mantle. J Geophys Res 117:B02208CrossRefGoogle Scholar
  6. Buob A, Luth RW, Schmidt MW, Ulmer P (2006) Experiments on CaCO3–MgCO3 solid solutions at high pressure and temperature. Am Mineral 91:435–440CrossRefGoogle Scholar
  7. Chen HL, Hautier G, Ceder G (2012) Synthesis, computed stability, and crystal structure of a new family of inorganic compounds: carbonophosphates. J Am Chem Soc 134(48):19619–19627CrossRefGoogle Scholar
  8. Comodi P, Liu Yu, Frezzotti ML (2001a) Structural and vibrational behaviour of fluorapatite with pressure. Part II: in situ micro-Raman spectroscopic investigation. Phys Chem Miner 28:225–231CrossRefGoogle Scholar
  9. Comodi P, Liu Yu, Zanazzi PF, Montagnoli M (2001b) Structural and vibrational behaviour of fluorapatite with pressure Part I: in situ single-crystal X-ray diffraction investigation. Phys Chem Miner 28:219–224CrossRefGoogle Scholar
  10. Dasgupta R, Hirschmann MM (2010) The deep carbon cycle and melting in Earth’s interior. Earth Planet Sci Lett 298:1–13CrossRefGoogle Scholar
  11. Dunn PJ, Grice JD, Fleischer M, Pabst A (1983) New mineral names. Am Mineral 68:1038–1041Google Scholar
  12. Fiquet G, Guyot F, Itie JP (1994) High-pressure X-ray diffraction study of carbonates: MgCO3, CaMg(CO3)2, and CaCO3. Am Mineral 79:15–23Google Scholar
  13. Franzolin E, Schmidt MW, Poli S (2011) Ternary Ca–Fe–Mg carbonates: subsolidus phase relations at 35 GPa and a thermodynamic solid solution model including order/disorder. Contrib Mineral Petrol 161(2):13–227CrossRefGoogle Scholar
  14. Frezzotti ML, Selverstone J, Sharp ZD, Compagnoni R (2011) Carbonate dissolution during subduction revealed by diamond-bearing rocks from the Alps. Nat Geosci 4:703–706CrossRefGoogle Scholar
  15. Gaillard F, Malki M, Iacono-Marziano G, Pichavant M, Scaillet B (2008) Carbonatite melts and electrical conductivity in the asthenosphere. Science 322:1363–1365CrossRefGoogle Scholar
  16. Gao J, Zhu F, Lai XJ, Huang R, Qin S, Chen DL, Liu J, Zheng LR, Wu X (2014) Compressibility of a natural smithsonite ZnCO3 up to 50 GPa. High Pressure Res 34(1):89–99CrossRefGoogle Scholar
  17. Gillet P, Biellmann C, Reynard B, McMillan P (1993) Raman spectroscopic studies of carbonates. Part I: high-pressure and high-temperature behaviour of calcite, magnesite, dolomite and aragonite. Phys Chem Miner 20:1–18Google Scholar
  18. Gillet P, Malezieux JM, Itié JP (1996) Phase changes and amorphization of zeolite at high pressures: the case of scolecite and mesolite. Am Mineral 81:651–657Google Scholar
  19. Goldsmith JR, Graf DL, Witters J, Northrop D (1962) Studies in the system CaCO3–MgCO3–FeCO3:1. Phase relations; 2. A method for the major-element spectrochemical analysis; 3. Composition of some ferroan dolomites. J Geol 70:659–688Google Scholar
  20. Grew ES, Armbruster T, Medenbach O, Yates MG, Carson CJ (2007) Chopinite, [(Mg, Fe)3X](PO4)2, a new mineral isostructural with sarcopside, from a fluorapatite segregation in granulite-facies paragneiss, Larsemann Hills, Prydz Bay, East Antarctica. Eur J Mineral 19:229–245CrossRefGoogle Scholar
  21. Grew ES, Yates MG, Beane RJ, Floss C, Gerbi C (2010) Chopinite-sarcopside solid solution, [(Mg, Fe)3X](PO4)2, in GRA95209, a transitional acapulcoite: implications for phosphate genesis in meteorites. Am Mineral 95:260–272CrossRefGoogle Scholar
  22. Hammersley AP, Svensson SO, Hanfland M, Fitch AN, Hausermann D (1996) Two-dimensional detector software: from real detector to idealised image or two-theta scan. High Pressure Res 14:235–248CrossRefGoogle Scholar
  23. Hofmann AW, Merlet C, Gurenko AA, Hellebrand E, Montagnac G, Gillet P, Prikhodko VS, Ionov DA (2006) Discovery of whitlockite in mantle xenoliths: inferences for water- and halogen-poor fluids and trace element residence in the terrestrial upper mantle. Earth Planet Sci Lett 244:201–277CrossRefGoogle Scholar
  24. Huang WF, Zhou J, Li B, Ma J, Tao S, Xia DG, Chu WS, Wu ZY (2014) Detailed investigation of Na2.24FePO4CO3 as a cathode material for Na-ion batteries. Sci Rep. doi: 10.1038/srep04188
  25. Hughes JM, Cameron M, Crowley KD (1990) Crystal structures of natural ternary apatites: solid solution in the Ca5[PO4]3X (X = F, OH, Cl) system. Am Mineral 75:295–304Google Scholar
  26. Jephcoat AP, Finger LW, Cox DE (1992) High pressure, high resolution synchrotron X-ray powder diffraction with a position-sensitive detector. High Pressure Res 8:667–676CrossRefGoogle Scholar
  27. Joswig W, Stachel T, Harris JW, Baur WH, Brey GP (1999) New Ca-silicate inclusions in diamonds-tracers from lower mantle. Earth Planet Sci Lett 173:1–6CrossRefGoogle Scholar
  28. Klemme S, Dalpé C (2003) Trace-element partitioning between apatite and carbonatite melt. Am Mineral 88:639–646Google Scholar
  29. Konzett J, Frost DJ (2009) The high P-T stability of hydroxyl-apatite in natural and simplified MORB- an experimental study to 15 GPa with implications for transport and storage of phosphorus and halogens in subduction zones. J Petrol 50(11):2043–2062CrossRefGoogle Scholar
  30. Larson AC, Von Dreele RB (1994) General structure analysis system (GSAS). Los Alamos Natl Lab 86–748Google Scholar
  31. Lin JF, Liu J, Jacobs C, Prakapenka VB (2012) Vibrational and elastic properties of ferromagnesite across the electronic spin-pairing transition of iron. Am Mineral 97:583–591CrossRefGoogle Scholar
  32. Liu LG, Lin CC (1997) A calcite → aragonite-type phase transition in CdCO3. Am Mineral 82:643–646Google Scholar
  33. Liu X, Shieh SR, Flee ME, Zhang L, Qiang H (2011) Equation of state of carbonated hydroxylapatite at ambient temperature up to 10 GPa: significance of carbonate. Am Mineral 96:74–80CrossRefGoogle Scholar
  34. Mackie PE, Young RA (1974) Fluorine-chlorine interaction in fluor-chlorapatite. J Solid State Chem 11:319–329CrossRefGoogle Scholar
  35. Mao HK, Xu J, Bell P (1986) Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. J Geophys Res 91:4673–4676CrossRefGoogle Scholar
  36. Mao Z, Armentrout M, Rainey E, Manning CE, Dera P, Prakapenka VB, Kavner A (2011) Dolomite III: a new candidate lower mantle carbonate. Geophys Res Lett 38:L22303Google Scholar
  37. Martin AM, Hammouda T (2011) Role of iron and reducing conditions on the stability of dolomite + coesite between 4.25 and 6 GPa-A potential mechanism for diamond formation during subduction. Eur J Mineral 123:5–16CrossRefGoogle Scholar
  38. Martinez I, Zhang J, Reeder RJ (1996) In situ X-ray diffraction of aragonite and dolomite at high pressure and high temperature: evidence for dolomite breakdown to aragonite and magnesite. Am Mineral 81:611–624Google Scholar
  39. Matsukage KN, Ono S, Kawamoto T, Kikegawa T (2004) The compressibility of a natural apatite. Phys Chem Miner 31(9):580–584CrossRefGoogle Scholar
  40. Merlini M, Crichton WA, Hanfland M, Gemmi M, Müller H, Kupenko I, Dubrovinsky L (2012a) Structures of dolomite at ultrahigh pressure and their influence on the deep carbon cycle. PNAS 109:13509–13514CrossRefGoogle Scholar
  41. Merlini M, Hanfland M, Crichton WA (2012b) CaCO3-III and CaCO3-VI, high-pressure polymorphs of calcite: possible host structures for carbon in the Earth’s mantle. Earth Planet Sci Lett 333–334:265–271CrossRefGoogle Scholar
  42. Merrill L, Bassett WA (1975) The crystal structure of CaCO3 (II), a high-pressure metastable phase of calcium carbonate. Acta Crystallogr B 31:343CrossRefGoogle Scholar
  43. Minch R, Seoung DH, Ehm L, Winkler B, Knorr K, Peters L, Borkowski LA, Parise JB, Lee Y, Dubrovinsky L, Depmeier W (2010) High pressure behavior of otavite (CdCO3). J Alloy Compd 508:251–257CrossRefGoogle Scholar
  44. Nord AG, Kierkrgaare P (1968) The crystal structure of Mg3(PO4)2. Acta Chem Scand 22:1466–1474CrossRefGoogle Scholar
  45. Oganov AR, Glass CW, Ono S (2006) High-pressure phases of CaCO3: crystal structure prediction and experiment. Earth Planet Sci Lett 241:95–103CrossRefGoogle Scholar
  46. Ono S (2007) High-pressure phase transformation in MnCO3: a synchrotron XRD study. Mineral Mag 71(1):105–111CrossRefGoogle Scholar
  47. Ono S, Kikegawa T, Ohishi Y, Tsuchiya J (2005) Post-aragonite phase transformation in CaCO3 at 40 GPa. Am Mineral 90:667–671CrossRefGoogle Scholar
  48. Presnall DC, Gudfinnsson GH, Walter MJ (2002) Generation of mid-ocean ridge basalts at pressures from 1 to 7 GPa. Geochim Cosmochim Acta 66:2073–2090CrossRefGoogle Scholar
  49. Santillán J, Williams Q (2004) A high-pressure infrared and X-ray study of FeCO3 and MnCO3: comparison with CaMg(CO3)2-dolomite. Phys Earth Planet Inter 143–144:291–304CrossRefGoogle Scholar
  50. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst A32:751–767CrossRefGoogle Scholar
  51. Stagno V, Tange Y, Miyajima N, McCammon CA, Irifune T, Frost DJ (2011) The stability of magnesite in the transition zone and the lower mantle as function of oxygen fugacity. Geophysical Res Lett 38:L19309CrossRefGoogle Scholar
  52. Sugiyama K, Tokonami M (1987) Structure and crystal chemistry of a dense polymorph of tricalcium phosphate Ca3(PO4)2: a host to accommodate large lithophile elements in the Earth’s mantle. Phys Chem Miner 15:125–130CrossRefGoogle Scholar
  53. Tacker RC (2008) Carbonate in igneous and metamorphic fluorapatite: two type A and two type B substitutions. Am Mineral 93:168–176CrossRefGoogle Scholar
  54. Williams Q, Knittle E (1996) Infrared and Raman spectra of Ca5(PO4)3F-fluorapatite at high pressure: compression-induced changes in phosphate site and Davydov splittings. J Phys Chem Solid 57(4):417–422CrossRefGoogle Scholar
  55. Williams Q, Collerson B, Knittle E (1993) Vibrational spectra of magnesite (MgCO3) and calcite-III at high pressures. Am Mineral 77:1158–1165Google Scholar
  56. Yi HH, Balan E, Gervais C, Segalen L, Fayon F, Roche D (2013) A carbonate-fluoride defect model for carbonate-rich fluorapatite. Am Mineral 98:1066–1069CrossRefGoogle Scholar
  57. Zhai SM, Liu X, Shien S, Zhang LF, Ito E (2009) Equation of state of γ-tricalcium phosphate, γ-Ca3(PO4)2, to lower mantle pressures. Am Mineral 94:1388–1391CrossRefGoogle Scholar
  58. Zhai SM, Wu X, Ito E (2010) High-pressure Raman spectra of tuite, γ-Ca3(PO4)2. J Raman Spectrosc 41:1011–1013CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Key Laboratory of Orogenic Belts and Crustal Evolution, MOE, School of Earth and Space SciencesPeking UniversityBeijingChina
  2. 2.National Synchrotron Radiation LaboratoryUniversity of Science and Technology of ChinaHefeiChina
  3. 3.College of EngineeringPeking UniversityBeijingChina
  4. 4.Laboratory for High Temperature and High Pressure Study of the Earth’s Interior, Institute of GeochemistryChinese Academy of SciencesGuiyangChina

Personalised recommendations