Advertisement

Physics and Chemistry of Minerals

, Volume 42, Issue 2, pp 123–129 | Cite as

Superior solid solubility of MnSiO3 in CaSiO3 perovskite

  • Lin Li
  • Takaya NagaiEmail author
  • Yusuke Seto
  • Kiyoshi Fujino
  • Jun Kawano
  • Shoich Itoh
Original Paper

Abstract

The silicate perovskite phase relation between CaSiO3 and MnSiO3 was investigated at 35–52 GPa and at 1,800 K using laser-heated diamond anvil cells combined with angle-dispersive synchrotron X-ray diffraction and energy-dispersive X-ray spectroscopic chemical analyses with scanning or transmission electron microscopy. We found that MnSiO3 can be incorporated into CaSiO3 perovskite up to 55, and 20 mol % of CaSiO3 is soluble in MnSiO3 perovskite. The range of 55–80 mol % of MnSiO3 in the CaSiO3–MnSiO3 perovskite system could be immiscible. We also observed that the two perovskite structured phases of the Mn-bearing CaSiO3 and the Ca-bearing MnSiO3 coexisted at these conditions. The Mn-bearing CaSiO3 perovskite has non-cubic symmetry and the Ca-bearing MnSiO3 perovskite has an orthorhombic structure with space group Pbnm. All the perovskite structured phases in the CaSiO3–MnSiO3 system convert to the amorphous phase during pressure release. MnSiO3 is the first chemical component confirmed to show such a superior solid solubility in CaSiO3 perovskite.

Keywords

Solid solution MnSiO3 perovskite CaSiO3 perovskite High pressure High temperature 

Notes

Acknowledgments

We thank T. Kikegawa and D. Hamane for their technical support with the X-ray diffraction experiments. We also thank Prof. M. Akaogi and an anonymous reviewer for helpful comments and constructive criticism. Synchrotron X-ray diffraction experiments were performed at the Photon Factory (proposal no. 2008G012, 2010G060, 2012G050). T. Nagai is partly supported by JSPS KAKENHI Grant Number 18340167 and MEXT KAKENHI Grant Number 20103002. S. Itoh is partly supported by MEXT KAKENHI Grant Number 20002002 and 22224010.

References

  1. Akber-Knutson S, Bukowinski MST, Matas J (2002) On the structure and compressibility of CaSiO3 perovskite. Geophys Res Lett 29:1034–1037CrossRefGoogle Scholar
  2. Brown P, Essene E, Peacor D (1980) Phase relations inferred from field data for Mn pyroxenes and pyroxenoids. Contrib Miner Petrol 74:417–425CrossRefGoogle Scholar
  3. Fritsch S, Navrotsky A (1996) Thermodynamic properties of manganese oxides. J Am Ceram Soc 79(7):1761–1768CrossRefGoogle Scholar
  4. Fujino K, Miyajima N, Yagi T, Kondo T, Funamori N (1998) Analytical electron microscopy of the Garnet-perovskite transformation in a laser-heated diamond anvil cell. In: Manghnani MH, Yagi T (eds) Properties of earth and planet mater at high press and temp, Geophys Monogr Ser, vol 101. AGU, Washington DC, pp 409–417Google Scholar
  5. Fujino K, Suzuki K, Hamane D, Seto Y, Nagai T, Sata N (2008) High-pressure phase relation of MnSiO3 up to 85 GPa: existence of MnSiO3 perovskite. Am Miner 93:653–657CrossRefGoogle Scholar
  6. Fujino K, Nishio-Hamane D, Suzuki K, Izumi H, Seto Y, Nagai T (2009) Stability of the perovskite structure and possibility of the transition to the post-perovskite structure in CaSiO3, FeSiO3, MnSiO3 and CoSiO3. Phys Earth Planet Inter 177:147–151CrossRefGoogle Scholar
  7. Irifune T, Ringwood AE, Hibberson WO (1994) Subduction of continental crust and terrigenous and pelagic sediments: an experimental study. Earth Planet Sci Lett 126:351–368CrossRefGoogle Scholar
  8. Jung DY, Schmidt MW (2011) Solid solution behaviour of CaSiO3 and MgSiO3 perovskites. Phys Chem Miner 38:311–319CrossRefGoogle Scholar
  9. Kesson SE, Fitz Gerald JD, Shelley JMG, Withers RL (1995) Phase relations, structure and crystal chemistry of some aluminous silicate perovskites. Earth Planet Sci Lett 134:187–201CrossRefGoogle Scholar
  10. Kurashina T, Hirose K, Ono S, Sata N, Ohishi Y (2004) Phase transition in Al-bearing CaSiO3 perovskite: implications for seismic discontinuities in the lower mantle. Phys Earth Planet Inter 145:67–74CrossRefGoogle Scholar
  11. Li L, Nagai T, Ishido T, Motai S, Fujino K, Itoh S (2014) Formation of a solid solution in the MgSiO3-MnSiO3 perovskite system. Phys Chem Miner 41:431–437CrossRefGoogle Scholar
  12. Mao HK, Chen LC, Hemley RJ, Jephcoat AP, Wu Y, Bassett WA (1989) Stability and equation of state of CaSiO3-perovskite to 134 GPa. J Geophys Res Solid Earth Planets 94:17889–17894CrossRefGoogle Scholar
  13. Sata N, Shen G, Rivers ML, Sutto SR (2002) Pressure-volume equation of state of high-pressure B2 phase of NaCl. Phys Rev B. doi: 10.1103/PhysRevB.65.104114 Google Scholar
  14. Seto Y, Hamane D, Nagai T, Sata N (2010) Development of a software suite on X-ray diffraction experiments. Rev High Press Sci Technol 20:269–276 (in Japanese)CrossRefGoogle Scholar
  15. Shannon RD (1976) Revised effective ionic-radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A 32:751–767CrossRefGoogle Scholar
  16. Shim SH, Jeanloz R, Duffy TS (2002) Tetragonal structure of CaSiO3 perovskite above 20 GPa. Geophys Res Lett. doi: 10.1029/2002GL016148 Google Scholar
  17. Stixrude L, Cohen RE, Yu RC, Krakauer H (1996) Prediction of phase transition in CaSiO3 perovskite and implications for lower mantle structure. Am Miner 81:1293–1296Google Scholar
  18. Uchida T, Wang Y, Nishiyama N, Funakoshi K, Kaneko H, Nozawa A, Von Dreele RB, Rivers ML, Sutton SR, Yamada A, Kunimoto T, Irifune T, Inoue T, Li BS (2009) Non-cubic crystal symmetry of CaSiO3 perovskite up to 18 GPa and 1,600 K. Earth Planet Sci Lett 282:268–274CrossRefGoogle Scholar
  19. Vitos L, Magyari-Kope B, Ahuja R, Kollar J, Grimvall G, Johansson B (2006) Phase transformations between garnet and perovskite phases in the Earth’s mantle: a theoretical study. Phys Earth Planet Inter 156:108–116CrossRefGoogle Scholar
  20. Watanuki T, Shimomura O, Yagi T, Kondo T, Isshiki M (2001) Construction of laser-heated diamond anvil cell system for in situ X-ray diffraction study at SPring-8. Rev Sci Instrum 72:1289–1292CrossRefGoogle Scholar
  21. Yagi T, Kusanagi S, Tsuchida Y, Fukai Y (1989) Isothermal compression and stability of perovskite-type CaSiO3. Proc Jpn Acad B Phys Biol Sci 65:129–132CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Lin Li
    • 1
    • 2
  • Takaya Nagai
    • 3
    Email author
  • Yusuke Seto
    • 4
  • Kiyoshi Fujino
    • 5
  • Jun Kawano
    • 3
  • Shoich Itoh
    • 3
    • 6
  1. 1.Department of Natural History Sciences, Graduate School of ScienceHokkaido UniversitySapporoJapan
  2. 2.State Key Laboratory of Geological Processes and Mineral ResourcesChina University of GeosciencesBeijingChina
  3. 3.Department of Natural History Sciences, Faculty of ScienceHokkaido UniversitySapporoJapan
  4. 4.Department of Earth and Planetary SciencesKobe UniversityKobeJapan
  5. 5.Geodynamics Research CenterEhime UniversityMatsuyamaJapan
  6. 6.Department of Geology and Mineralogy, Faculty of ScienceKyoto UniversityKyotoJapan

Personalised recommendations