Physics and Chemistry of Minerals

, Volume 42, Issue 1, pp 73–81 | Cite as

Melting and decomposition of MgCO3 at pressures up to 84 GPa

  • N. A. SolopovaEmail author
  • L. Dubrovinsky
  • A. V. Spivak
  • Yu. A. Litvin
  • N. Dubrovinskaia
Original Paper


Magnesium carbonate MgCO3 (magnesite) was experimentally studied at pressures of 12–84 GPa and temperatures between 1,600 and 3,300 K. We applied the high-pressure technique using a multianvil press and a diamond anvil cell with laser heating. The phase relations and melting of magnesite were investigated by means of Raman and time-resolved multi-wavelength spectroscopy. Magnesite is found to melt congruently within the entire studied pressure range at temperatures of 2,100–2,650 K. At temperatures above 2,700 K, we observed decomposition of magnesite with formation of MgO and a carbon phase (diamond). Our results demonstrate that at high pressures, the magnesium carbonate melt can exist at a wide range of thermodynamic conditions.


Mg-carbonate melting High-temperature decomposition boundary Phase relations High-pressure experiment Laser heating Raman spectroscopy 



The study was financially supported by the German Research Foundation (DFG) and the Russian Foundation for Basic Research (Nos. 13-05-00835, 14-05-31142 and 11-05-00401). N.D. thanks DFG for financial support through the Heisenberg Program and the DFG Project DU 954-8/1.


  1. Akahama Y, Kawamura H (2006) Pressure calibration of diamond anvil Raman gauge to 310 GPa. J Appl Phys 100:043516. doi: 10.1063/1.2335683 CrossRefGoogle Scholar
  2. Biellmann C, Gillet P, Guyot F et al (1993) Experimental evidence for carbonate stability in the Earth’s lower mantle. Earth Planet Sci Lett 118:31–41. doi: 10.1016/0012-821X(93)90157-5 CrossRefGoogle Scholar
  3. Boulard E, Gloter A, Corgne A et al (2011) New host for carbon in the deep Earth. 108:5184–5187. doi: 10.1073/pnas.1016934108
  4. Boulard E, Menguy N, Auzende AL et al (2012) Experimental investigation of the stability of Fe-rich carbonates in the lower mantle. J Geophys Res 117:B02208. doi: 10.1029/2011JB008733 Google Scholar
  5. Brenker FE, Vollmer C, Vincze L et al (2007) Carbonates from the lower part of transition zone or even the lower mantle. Earth Planet Sci Lett 260:1–9. doi: 10.1016/j.epsl.2007.02.038 CrossRefGoogle Scholar
  6. Bulanova GP, Pavlova LP (1987) Magnesite peridotite mineral association in a diamond from the Mir pipe. Dokl Akad Nauk SSSR 295:1452–1456Google Scholar
  7. Bundy FP, Bassett WA, Weathers MS et al (1996) The pressure-temperature phase and transformation diagram for carbon; updated through 1994. Carbon N Y 34:141–153. doi: 10.1016/0008-6223(96)00170-4 CrossRefGoogle Scholar
  8. Dasgupta R, Hirschmann MM (2010) The deep carbon cycle and melting in Earth’s interior. Earth Planet Sci Lett 298:1–13. doi: 10.1016/j.epsl.2010.06.039 CrossRefGoogle Scholar
  9. Dubrovinskaia N, Eska G, Sheshin GA, Braun H (2006) Superconductivity in polycrystalline boron-doped diamond synthesized at 20 GPa and 2700 K. J Appl Phys 99:033903. doi: 10.1063/1.2166645 CrossRefGoogle Scholar
  10. Dubrovinsky L, Glazyrin K, McCammon C et al (2009) Portable laser-heating system for diamond anvil cells. J Synchrotron Radiat 16:737–741. doi: 10.1107/S0909049509039065 CrossRefGoogle Scholar
  11. Fiquet G, Guyot F, Kunz M et al (2002) Structural refinements of magnesite at very high pressure. Am Mineral 87:1261–1265Google Scholar
  12. Frost D, Poe B, Tronnes R et al (2004) A new large-volume multianvil system. Phys Earth Planet Inter 143–144:507–514. doi: 10.1016/j.pepi.2004.03.003 CrossRefGoogle Scholar
  13. Gillet P, Biellmann C, Reynard B, McMillan P (1993) Raman spectroscopic studies of carbonates part I: high-pressure and high-temperature behavior of calcite, magnesite, dolomite and aragonite. Phys Chem Miner. doi: 10.1007/BF00202245 Google Scholar
  14. Hanfland M, Syassen K (1985) A Raman study of diamond anvils under stress. J Appl Phys 57:2752. doi: 10.1063/1.335417 CrossRefGoogle Scholar
  15. Irving AJ, Wyllie PJ (1973) Melting relationships in CaO-CO2 and MgO-CO2 to 36 kilobars with comments on CO2 in the mantle. Earth Planet Sci Lett 20:220–225. doi: 10.1016/0012-821X(73)90161-1 CrossRefGoogle Scholar
  16. Isshiki M, Irifune T, Hirose K et al (2004) Stability of magnesite and its high-pressure form in the lowermost mantle. Nature 427:60–63. doi: 10.1038/nature02181 CrossRefGoogle Scholar
  17. Ito E, Katsura T (1992) High pressure research: application to earth and planetary sciences. Geophys Monogr Ser 67:315–322. doi: 10.1029/GM067 Google Scholar
  18. Kaminsky FV, Wirth R, Schreiber A (2014) Carbonatitic inclusions in deep mantle diamond from Juina, Brazil: new minerals in the carbonate-halide association. Can Mineral 51:669–688. doi: 10.3749/canmin.51.5.669 CrossRefGoogle Scholar
  19. Katsura T, Ito E (1990) Melting and subsolidus phase relations in the MgSiO3–MgCO3 system at high pressures: implications to evolution of the Earth’s atmosphere. Earth Planet Sci Lett 99:110–117. doi: 10.1016/0012-821X(90)90074-8 CrossRefGoogle Scholar
  20. Katsura T, Yoneda A, Yamazaki D et al (2010) Adiabatic temperature profile in the mantle. Phys Earth Planet Inter 183:212–218. doi: 10.1016/j.pepi.2010.07.001 CrossRefGoogle Scholar
  21. Kupenko I, Dubrovinsky L, Dubrovinskaia N et al (2012) Portable double-sided laser-heating system for Mössbauer spectroscopy and X-ray diffraction experiments at synchrotron facilities with diamond anvil cells. Rev Sci Instrum 83:124501. doi: 10.1063/1.4772458 CrossRefGoogle Scholar
  22. Litasov KD, Goncharov AF, Hemley RJ (2011) Crossover from melting to dissociation of CO2 under pressure: implications for the lower mantle. Earth Planet Sci Lett 309:318–323. doi: 10.1016/j.epsl.2011.07.006 CrossRefGoogle Scholar
  23. Litvin YuA, Vasiliev PG, Bobrov AV et al (2011) Parental media for diamonds and primary inclusions by evidence of physicochemical experiment. Vestn Otd Nauk o Zemle RAN 3:1–7. doi: 10.2205/2011NZ000196 CrossRefGoogle Scholar
  24. Litvin Yu, Spivak A, Solopova N, Dubrovinsky L (2014) On origin of lower-mantle diamonds and their primary inclusions. Phys Earth Planet Inter. doi: 10.1016/j.pepi.2013.12.007 Google Scholar
  25. Oganov AR, Ono S, Ma Y et al (2008) Novel high-pressure structures of MgCO3, CaCO3 and CO2 and their role in Earth’s lower mantle. Earth Planet Sci Lett 273:38–47. doi: 10.1016/j.epsl.2008.06.005 CrossRefGoogle Scholar
  26. Pippinger T, Dubrovinsky L, Glazyrin K et al (2011) Detection of melting by in situ observation of spherical-drop formation in laser-heated diamond-anvil cells 23:29–41Google Scholar
  27. Prakapenka VB, Kubo A, Kuznetsov A et al (2008) Advanced flat top laser heating system for high pressure research at GSECARS: application to the melting behavior of germanium. High Press Res 28:225–235. doi: 10.1080/08957950802050718 CrossRefGoogle Scholar
  28. Scott HP, Doczy VM, Frank MR et al (2013) Magnesite formation from MgO and CO2 at the pressures and temperatures of Earth’s mantle. Am Mineral 98:1211–1218. doi: 10.2138/am.2013.4260 CrossRefGoogle Scholar
  29. Shen G, Wang L, Ferry R et al (2010) A portable laser heating microscope for high pressure research. J Phys Conf Ser 215:012191. doi: 10.1088/1742-6596/215/1/012191 CrossRefGoogle Scholar
  30. Skorodumova NV (2005) Stability of the MgCO3 structures under lower mantle conditions. Am Mineral 90:1008–1011. doi: 10.2138/am.2005.1685 CrossRefGoogle Scholar
  31. Solopova NA, Litvin YuA, Spivak AV et al (2013) The phase diagram of Na carbonate, an alkaline component of the growth medium of ultradeep diamonds. Dokl Earth Sci 453:1106–1109. doi: 10.1134/S1028334X13110068 CrossRefGoogle Scholar
  32. Spivak AV, Litvin YuA, Ovsyannikov SV et al (2012) Stability and breakdown of Ca13CO3 melt associated with formation of 13C-diamond in static high pressure experiments up to 43 GPa and 3900K. J Solid State Chem 191:102–106. doi: 10.1016/j.jssc.2012.02.041 CrossRefGoogle Scholar
  33. Stagno V, Tange Y, Miyajima N, et al (2011) The stability of magnesite in the transition zone and the lower mantle as function of oxygen fugacity. Geophys Res Lett 38. doi:  10.1029/2011GL049560
  34. Tao R, Fei Y, Zhang L (2013) Experimental determination of siderite stability at high pressure. Am Mineral 98:1565–1572. doi: 10.2138/am.2013.4351 CrossRefGoogle Scholar
  35. Tschauner O, Mao H, Hemley R (2001) New transformations of CO2 at high pressures and temperatures. Phys Rev Lett 87:075701. doi: 10.1103/PhysRevLett.87.075701 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • N. A. Solopova
    • 1
    • 2
    Email author
  • L. Dubrovinsky
    • 1
  • A. V. Spivak
    • 3
  • Yu. A. Litvin
    • 3
  • N. Dubrovinskaia
    • 2
  1. 1.Bayerisches GeoinstitutUniversity of BayreuthBayreuthGermany
  2. 2.Material Physics and Technology at Extreme Conditions, Laboratory of CrystallographyUniversity of BayreuthBayreuthGermany
  3. 3.Institute of Experimental MineralogyRussian Academy of SciencesChernogolovka, Moscow RegionRussia

Personalised recommendations