Advertisement

Physics and Chemistry of Minerals

, Volume 41, Issue 8, pp 603–615 | Cite as

Thermodynamic properties of chlorite and berthierine derived from calorimetric measurements

  • Philippe BlancEmail author
  • Hélène Gailhanou
  • Jacques Rogez
  • Georges Mikaelian
  • Hitoshi Kawaji
  • Fabienne Warmont
  • Stéphane Gaboreau
  • Sylvain Grangeon
  • Jean-Marc Grenèche
  • Philippe Vieillard
  • Claire I. Fialips
  • Eric Giffaut
  • Eric C. Gaucher
  • F. Claret
Original Paper

Abstract

In the context of the deep waste disposal, we have investigated the respective stabilities of two iron-bearing clay minerals: berthierine ISGS from Illinois [USA; (Al0.975FeIII0.182FeII1.422Mg0.157Li0.035Mn0.002)(Si1.332Al0.668)O5(OH)4] and chlorite CCa-2 from Flagstaff Hill, California [USA; (Si2.633Al1.367)(Al1.116FeIII0.215Mg2.952FeII1.712Mn0.012Ca0.011)O10(OH)8]. For berthierine, the complete thermodynamic dataset was determined at 1 bar and from 2 to 310 K, using calorimetric methods. The standard enthalpies of formation were obtained by solution-reaction calorimetry at 298.15 K, and the heat capacities were measured by heat-pulse calorimetry. For chlorite, the standard enthalpy of formation is measured by solution-reaction calorimetry at 298.15 K. This is completing the entropy and heat capacity obtained previously by Gailhanou et al. (Geochim Cosmochim Acta 73:4738–4749, 2009) between 2 and 520 K, by using low-temperature adiabatic calorimetry and differential scanning calorimetry. For both minerals, the standard entropies and the Gibbs free energies of formation at 298.15 K were then calculated. An assessment of the measured properties could be carried out with respect to literature data. Eventually, the thermodynamic dataset allowed realizing theoretical calculations concerning the berthierine to chlorite transition. The latter showed that, from a thermodynamic viewpoint, the main factor controlling this transition is probably the composition of the berthierine and chlorite minerals and the nature of the secondary minerals rather than temperature.

Keywords

Berthierine ISGS Chlorite CCa-2 Enthalpy Gibbs free energy Entropy Heat capacity Calorimetry 

Notes

Acknowledgments

We are very grateful to Randall E. Hughes for his kindness in providing us with the berthierine sample for this study. Financial support from the French National Radioactive Waste Management Agency (ANDRA) and from the French Geological Survey (BRGM) is gratefully acknowledged. A. Benisek and an anonymous reviewer are strongly thanked for valuable comments and suggestions on the manuscript.

Supplementary material

269_2014_683_MOESM1_ESM.doc (40 kb)
Supplementary material 1 (DOC 39 kb)
269_2014_683_MOESM2_ESM.doc (100 kb)
Supplementary material 2 (DOC 100 kb)
269_2014_683_MOESM3_ESM.doc (39 kb)
Supplementary material 3 (DOC 39 kb)

References

  1. Bertoldi C, Dachs E, Cemic L, Theye T, Wirth R, Groger W (2005) The heat capacity of the serpentine group mineral Berthierine (Fe2.5Al0.5)[Si1.5Al0.5O5](OH)4. Clays Clay Miner 53:380–388. doi: 10.1346/CCMN.2005.0530406 CrossRefGoogle Scholar
  2. Bertoldi C, Dachs E, Appel P (2007) Heat-pulse calorimetry measurements on natural chlorite-group minerals. Am Mineral 92:553–559. doi: 10.2138/am.2007.2247 CrossRefGoogle Scholar
  3. Blanc P, Vieillard P, Gailhanou H, Gaboreau S (2013) Thermodynamics of clay minerals. In: Bergaya F, Lagaly G (eds) Developments in clay science, chap 6. Elsevier, pp 173–210Google Scholar
  4. Dachs E, Benisek A (2011) A sample-saving method for heat capacity measurements on powders using relaxation calorimetry. Cryogenics 51:460–464. doi: 10.1016/j.cryogenics.2011.04.011 CrossRefGoogle Scholar
  5. Dachs E, Bertoldi C (2005) Precision and accuracy of the heat-pulse calorimetric technique low-temperature heat capacities of milligram-sized synthetic mineral samples. Eur J Mineral 17:251–261. doi: 10.1127/0935-1221/2005/0017-0251 CrossRefGoogle Scholar
  6. Gailhanou H, van Miltenburg JC, Rogez J, Olives J, Amouric M, Gaucher EC, Blanc P (2007) Thermodynamic properties of anhydrous smectite MX-80, illite IMt-2 and mixed-layer illite–smectite ISCz-1 as determined by calorimetric methods. Part I: heat capacities, heat contents and entropies. Geochim Cosmochim Acta 71:5463–5473. doi: 10.1016/j.gca.2007.09.020 CrossRefGoogle Scholar
  7. Gailhanou H, Rogez J, van Miltenburg JC, van Genderen ACG, Grenèche JM, Gilles C, Jalabert D, Michau N, Gaucher EC, Blanc P (2009) Thermodynamic properties of chlorite CCa-2. Heat capacities, heat contents and entropies. Geochim Cosmochim Acta 73:4738–4749. doi: 10.1016/j.gca.2009.04.040 CrossRefGoogle Scholar
  8. Gailhanou H, Blanc P, Rogez J, Mikaelian G, Kawaji H, Olives J, Amouric M, Denoyel R, Bourrelly S, Montouillout V, Vieillard P, Fialips CI, Michau N, Gaucher EC (2012) Thermodynamic properties of illite, smectite and beidellite by calorimetric methods: enthalpies of formation, heat capacities, entropies and Gibbs free energies of formation. Geochim Cosmochim Acta 89:279–301. doi: 10.1016/j.gca.2012.04.048 CrossRefGoogle Scholar
  9. Gailhanou H, Blanc P, Rogez J, Mikaelian G, Horiuchi K, Yamamura Y, Saito K, Kawaji H, Warmont F, Grenèche JM, Vieillard P, Fialips CI, Giffaut E, Gaucher EC (2013) Thermodynamic properties of saponite, nontronite, and vermiculite derived from calorimetric measurements. Am Mineral 98:1834–1847. doi: 10.2138/am.2013.4344 CrossRefGoogle Scholar
  10. Ganteaume M, Coten M, Decressac M (1991) Un nouveau calorimetre de solution le calsol. Thermochim Acta 178:81–98CrossRefGoogle Scholar
  11. Gehring AU (1990) An ESR and calorimetric study of iron oolitic samples from the Northampton ironstone. Clay Miner 25:303–311. doi: 10.1180/claymin.1990.025.3.06 CrossRefGoogle Scholar
  12. Gualtieri AF, Venturelli P (1999) In situ study of the goethite-hematite phase transformation by real-time synchrotron powder diffraction. Am Mineral 84:895–904Google Scholar
  13. Hemingway BS, Robie RA, Kittrick JA, Grew ES, Nelen JA, London D (1984) The heat capacities of osumilite from 298.15 to 1000 K, the thermodynamic properties of two natural chlorites to 500 K, and the thermodynamic properties of petalite to 1800 K. Am Mineral 69:701–710 Google Scholar
  14. Inoue A, Meunier A, Patrier-Mas P, Rigault C, Beaufort D, Vieillard P (2009) Application of chemical geothermometry to low-temperature trioctahedral chlorites. Clays Clay Miner 57:371–382. doi: 10.1346/CCMN.2009.0570309
  15. Kraus W, Nolze G (1996) POWDER CELL—a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. J Appl Crystallogr 29:301–303. doi: 10.1107/S0021889895014920 CrossRefGoogle Scholar
  16. Mandarino JA, Anderson V (1989) Monteregian treasures: the minerals of Mont Saint-Hilaire, Quebec. CUP Archive, CambridgeGoogle Scholar
  17. Mathé P-E, Rochette P, Vandamme D, Fillion G (1999) Néel temperatures of synthetic substituted goethites and their rapid determination using low-field susceptibility curves. Geophys Res Lett 26:2125–2128. doi: 10.1029/1999GL900424 CrossRefGoogle Scholar
  18. Moore DM, Hughes RE (2000) Ordovician and Pennsylvanian berthierine-bearing flint clays. Clays Clay Miner 48:145–149CrossRefGoogle Scholar
  19. Mosser-Ruck R, Cathelineau M, Guillaume D, Charpentier D, Rousset D, Barres O, Michau N (2010) Effects of temperature, pH, and iron/clay and liquid/clay ratios on experimental conversion of dioctahedral smectite to berthierine, chlorite, vermiculite, or saponite. Clays Clay Miner 58:280–291. doi: 10.1346/CCMN.2010.0580212 CrossRefGoogle Scholar
  20. Özdemir Ö, Dunlop DJ (1996) Thermoremanence and Néel temperature of goethite. Geophys Res Lett 23:921–924. doi: 10.1029/96GL00904 CrossRefGoogle Scholar
  21. Özdemir Ö, Dunlop DJ (2000) Intermediate magnetite formation during dehydration of goethite. Earth Planet Sci Lett 177:59–67. doi: 10.1016/S0012-821X(00)00032-7 CrossRefGoogle Scholar
  22. Parkhurst DL, Appelo CAJ (1999) User‘s guide to PHREEQC (Version 2): a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. United States Geological SurveyGoogle Scholar
  23. Post JL (1972) The chlorite series of flagstaff hill area, California: a preliminary investigation. Clays Clay Miner 20:271–283. doi: 10.1346/CCMN.1972.0200504 CrossRefGoogle Scholar
  24. Pusch R (2012) Optimal ways of disposal of highly radioactive waste. Nat Sci 04:906–918. doi: 10.4236/ns.2012.431118 Google Scholar
  25. Robie RA, Hemingway BS (1991) Heat capacities of kaolinite from 7 to 380 K and of DMSO-intercalated kaolinite from 20 to 310 K. The entropy of kaolinite Al2Si2O5(OH)4. Clays Clay Miner 39:362–368CrossRefGoogle Scholar
  26. Robie RA, Hemingway BS, Takei H (1982) Heat capacities and entropies of Mg2SiO4, Mn2SiO4, and Co2SiO4 between 5 and 380 K. Amer Miner 67:470–482Google Scholar
  27. Ross GJ (1974) Experimental transformation of a chlorite into a vermiculite. Clays Clay Miner 22:205–211. doi: 10.1346/CCMN.1974.0220302 CrossRefGoogle Scholar
  28. Savage D, Watson C, Benbow S, Wilson J (2010) Modelling iron-bentonite interactions. Appl Clay Sci 47:91–98. doi: 10.1016/j.clay.2008.03.011 CrossRefGoogle Scholar
  29. Ulbrich HH, Waldbaum DR (1976) Structural and other contributions to the third-law entropies of silicates. Geochim Cosmochim Acta 40:1–24. doi: 10.1016/0016-7037(76)90189-7 CrossRefGoogle Scholar
  30. Vidal O, Parra T, Vieillard P (2005) Thermodynamic properties of the Tschermak solid solution in Fe-chlorite: application to natural examples and possible role of oxidation. Am Mineral 90:347–358. doi: 10.2138/am.2005.1554 CrossRefGoogle Scholar
  31. Walshe JL (1986) A six-component chlorite solid solution model and the conditions of chlorite formation in hydrothermal and geothermal systems. Econ Geol 81:681–703. doi: 10.2113/gsecongeo.81.3.681 CrossRefGoogle Scholar
  32. Wilson J, Cressey G, Cressey B, Cuadros J, Ragnarsdottir KV, Savage D, Shibata M (2006a) The effect of iron on montmorillonite stability. (II) Experimental investigation. Geochim Cosmochim Acta 70:323–336. doi: 10.1016/j.gca.2005.09.023 CrossRefGoogle Scholar
  33. Wilson J, Savage D, Cuadros J, Shibata M, Ragnarsdottir KV (2006b) The effect of iron on montmorillonite stability. (I) Background and thermodynamic considerations. Geochim Cosmochim Acta 70:306–322. doi: 10.1016/j.gca.2005.10.003 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Philippe Blanc
    • 1
    Email author
  • Hélène Gailhanou
    • 1
  • Jacques Rogez
    • 2
  • Georges Mikaelian
    • 2
  • Hitoshi Kawaji
    • 3
  • Fabienne Warmont
    • 4
  • Stéphane Gaboreau
    • 1
  • Sylvain Grangeon
    • 1
  • Jean-Marc Grenèche
    • 5
  • Philippe Vieillard
    • 6
  • Claire I. Fialips
    • 7
  • Eric Giffaut
    • 7
  • Eric C. Gaucher
    • 1
  • F. Claret
    • 1
  1. 1.BRGMOrléansFrance
  2. 2.IM2NP-CNRS Aix Marseille UniversitéMarseille Cedex 20France
  3. 3.Tokyo Institute of TechnologyYokohamaJapan
  4. 4.CRMD-CNRSOrléansFrance
  5. 5.IMMM UMR CNRS 6283, Institut des Molécules et Matériaux du Mans, LUNAMUniversité du MaineLe Mans Cedex 9France
  6. 6.CNRS-IC2MP-UMR-7285-HydrasaPoitiers-CedexFrance
  7. 7.AndraChâtenay-Malabry CedexFrance

Personalised recommendations