Physics and Chemistry of Minerals

, Volume 41, Issue 9, pp 681–693 | Cite as

Growth of magnesio-aluminate spinel in thin-film geometry: in situ monitoring using synchrotron X-ray diffraction and thermodynamic model

  • L. C. GötzeEmail author
  • R. Abart
  • R. Milke
  • S. Schorr
  • I. Zizak
  • R. Dohmen
  • R. Wirth
Original Paper


Polycrystalline spinel layers were grown experimentally at the contacts between single-crystal corundum substrates and initially amorphous, then polycrystalline MgO thin films. The growth behavior of the spinel layers was monitored in situ using synchrotron X-ray diffraction. The change in the integrated intensity of the 111 spinel Bragg peak was correlated with the thickness of the layer as determined from ex situ TEM characterization of the run products. At \(900\,^{\circ }\hbox {C},\) a transition from linear growth, corresponding to interface reaction control, to parabolic growth, corresponding to diffusion control, occurred at a layer thickness of less than 10 nm. At 1,000 \(^{\circ }\hbox {C},\) growth was largely linear up to a layer thickness in excess of 300 nm. A thermodynamic model was applied to extract the kinetic parameters characterizing interface motion and long-range diffusion from this growth behavior.


In situ experiments Diffusion couples Spinel  Thin films Synchrotron X-ray diffraction TEM analysis  Thermodynamic modeling 



The EDDI beamline scientists M. Klaus and C. Genzel are thanked for the assistance, and R. Gunder is acknowledged for helping out during the in situ experiments. A. Schreiber and S. Gehrmann from the GFZ are acknowledged for the FIB extraction of TEM foils and substrate preparation, respectively. Two anonymous reviewers are thanked for providing valuable comments. This work was funded by the Deutsche Forschungsgemeinschaft, projects SCHO 670/9-1 and AB 314/2-1, both in the framework of the research group FOR 741.


  1. Abart R, Petrishcheva E, Fischer FD, Svoboda J (2009) Thermodynamic model for diffusion controlled reaction rim growth in a binary system: application to the forsterite-enstatite-quartz system. Am J Sci 309:114–131. doi: 10.2475/02.2009.02 CrossRefGoogle Scholar
  2. Abart R, Petrishcheva E (2011) Thermodynamic model for reaction rim growth: interface reaction and diffusion control. Am J Sci 311:517–527. doi: 10.2475/06.2011.02 CrossRefGoogle Scholar
  3. Apel D, Klaus M, Genzel C, Balzar D (2011) Rietveld refinement of energy-dispersive synchrotron measurements. Z Kristallogr 226:934–943. doi: 10.1524/zkri.2011.1436 CrossRefGoogle Scholar
  4. Carter RE (1961) Mechanism of solid-state reaction between magnesium oxide and aluminum oxide and between magnesium oxide and ferric oxide. J Am Ceram Soc 44:116–120CrossRefGoogle Scholar
  5. Carter CB, Schmalzried H (1985) The growth of spinel into Al2O3. Philos Mag A 52:207–224CrossRefGoogle Scholar
  6. Daneu N, Rečnik A, Yamazaki T, Dolenec T (2007) Structure and chemistry of (111) twin boundaries in MgAl2O4 spinel crystals from mogok. Phys Chem Minerals 34:233–247. doi: 10.1007/s00269-007-0142-1 CrossRefGoogle Scholar
  7. Deal BE, Grove AS (1965) General relationship for thermal oxidation of silicon. J Appl Phys 36:3770–3778. doi: 10.1063/1.1713945 CrossRefGoogle Scholar
  8. De Groot SR, Mazur S (1984) Non-equilibrium thermodynamics. Dover Publications, New YorkGoogle Scholar
  9. Dohmen R, Becker H-W, Meissner E, Etzel T, Chakraborty S (2002) Production of silicate thin films using pulsed laser deposition (PLD) and applications to studies in mineral kinetics. Eur J Mineral 14:1155–1168CrossRefGoogle Scholar
  10. Duckwitz CA, Schmalzried H (1971) Reaktionen zwischen festen Oxiden unter Einschluß von Gastransport. Z Phys Chem Neue Fol 76:173–193CrossRefGoogle Scholar
  11. Dybkov VI (1986) Reaction diffusion in heterogeneous binary systems. Part 2 growth of the chemical compound layers at the interface between two elementary substances: two compound layers. J Mater Sci 21:3085–3090CrossRefGoogle Scholar
  12. Eason R (2007) Pulsed laser deposition of thin films: applications-led growth of functional materials. Wiley, New YorkGoogle Scholar
  13. Erko A, Packe I, Hellwig C, Fieber-Erdmann M, Pawlizki O, Veldkamp M, Gudat W (2000) KMC-2: the new X-ray beamline at BESSY II. AIP Conf Proc 521:415–418CrossRefGoogle Scholar
  14. Farrell HH, Gilmer GH, Suenaga M (1975) Diffusion mechanisms for growth of \(\text{Nb}_3\text{Sn}\) intermetallic layers. Thin Solid Films 25:253–264CrossRefGoogle Scholar
  15. Fisher GW (1978) Rate laws in metamorphism. Geochim Cosmochim Ac 42:1035–1050CrossRefGoogle Scholar
  16. Fultz B, Howe J (2008) Transmission electron microscopy and diffractometry of materials. Springer, BerlinGoogle Scholar
  17. Gardés E, Wunder B, Wirth R, Heinrich W (2011) Growth of multilayered polycrystalline reaction rims in the \(\text{MgO-SiO}_2\) system, part i: experiments. Contrib Mineral Petr 161:1–12. doi: 10.1007/s00410-010-0517-z CrossRefGoogle Scholar
  18. Genzel C, Denks IA, Klaus M (2006) The materials science beamline EDDI for energy-dispersive analysis of subsurface residual stress gradients. Mater Sci Forum 524–525:193–198. doi: 10.4028/ CrossRefGoogle Scholar
  19. Genzel C, Denks IA, Gibmeier J, Klaus M, Wagener G (2007) The materials science synchrotron beamline EDDI for energy-dispersive diffraction analysis. Nucl Instrum Meth A 578:23–33. doi: 10.1016/j.nima.2007.05.209 CrossRefGoogle Scholar
  20. Gösele U, Tu KN (1982) Growth kinetics of planar binary diffusion couples: “thinfilm case” versus “bulk cases”. J Appl Phys 53:3252–3260. doi: 10.1063/1.331028 CrossRefGoogle Scholar
  21. Götze LC, Abart R, Rybacki E, Keller LM, Petrishcheva E, Dresen G (2010) Reaction rim growth in the system \(\text{MgO-Al}_2\text{O}_3\text{-SiO}_2\) under uniaxial stress. Miner Petrol 99:263–277. doi: 10.1007/s00710-009-0080-3 CrossRefGoogle Scholar
  22. Hallstedt B (1992) Thermodynamic assessment of the system \(\text{MgO-Al}_2\text{O}_3\). J Am Ceram Soc 75:1497–1507CrossRefGoogle Scholar
  23. He T, Becker KD (1997) An optical in-situ study of a reacting spinel crystal. Solid State Ionics 101–103:337–342CrossRefGoogle Scholar
  24. Hesse D, Senz S, Scholz R, Werner P, Heydenreich J (1994) Structure and morphology of the reaction fronts during the formation of \(\text{MgAl}_2\text{O}_4\) thin films by solid state reaction between r-cut sapphire substrates and MgO films. Interface Sci 2:221–237Google Scholar
  25. Holland TJB, Powell R (1998) An internally consistent thermodynamic dataset for phases of petrological interest. J Metamorph Geol 16:309–344. doi: 10.1111/j.1525-1314.1998.00140.x CrossRefGoogle Scholar
  26. Hornstra J (1960) Dislocations, stacking faults and twins in the spinel structure. J Phys Chem Solids 15:311–323CrossRefGoogle Scholar
  27. Jeřábek P, Abart R, Rybacki E, Habler G (2014) Microstructure and texture evolution during growth of magnesio-aluminate spinel at corundum–periclase interfaces under uniaxial load: the effect of loading on reaction progress. Am J Sci (in press)Google Scholar
  28. Joachim B, Gardés E, Abart R, Heinrich W (2011) Experimental growth of åkermanite reaction rims between wollastonite and monticellite: evidence for volume diffusion control. Contrib Mineral Petrol 161:389–399. doi: 10.1007/s00410-010-0538-7 CrossRefGoogle Scholar
  29. Keller LM, Götze LC, Rybacki E, Dresen G, Abart R (2010) Enhancement of solid-state reaction rates by non-hydrostatic stress effects on polycrystalline diffusion kinetics. Am Min 95:1399–1407. doi: 10.2138/am.2010.3372 CrossRefGoogle Scholar
  30. Koch E, Wagner C (1936) Formation of \(\text{Ag}_2\text{HgI}_4\) from AgI and \(\text{HgI}_2\) by reaction in the solid state. Z Phys Chem B34:317–321Google Scholar
  31. Kotula PG, Johnson MT, Carter CB (1998) Thin-film reactions. Z Phys Chem 206:73–99CrossRefGoogle Scholar
  32. Lee WE, Lagerlof KPD (1985) Structural and electron diffraction data for sapphire \((\alpha \text{-Al}_2\text{O}_3)\). J Electron Microsc 2:247–258CrossRefGoogle Scholar
  33. Li DX, Pirouz P, Heuer AH, Yadavalli S, Flynn CP (1992) A high-resolution electron microscopy study of \(\text{MgO/Al}_2\text{O}_3\) interfaces and \(\text{MgAl}_2\text{O}_4\) spinel formation. Philos Mag A 65:403–425CrossRefGoogle Scholar
  34. Liu C-M, Chen J-C, Chen C-J (2005) The growth of an epitaxial Mg-Al spinel layer on sapphire by solid-state reactions. J Cryst Growth 285:275–283. doi: 10.1016/j.jcrysgro.2005.08.023 CrossRefGoogle Scholar
  35. Milke R, Wiedenbeck M, Heinrich W (2001) Grain boundary diffusion of Si, Mg, and O in enstatite reaction rims: a SIMS study using isotopically doped reactants. Contrib Mineral Petr 142:15–26CrossRefGoogle Scholar
  36. Milke R, Wirth R (2003) The formation of columnar fiber texture in wollastonite rims by induced stress and implications for diffusion-controlled corona growth. Phys Chem Minerals 30:230–242CrossRefGoogle Scholar
  37. Milke R, Dohmen R, Becker H-W, Wirth R (2007) Growth kinetics of enstatite reaction rims studied on nano-scale, part I: methodology, microscopic observations and the role of water. Contrib Mineral Petr 154:519–533CrossRefGoogle Scholar
  38. Navias L (1961) Preparation and properties of spinel made by vapor transport and diffusion in the system MgO-Al2O3. J Am Ceram Soc 44:434–446CrossRefGoogle Scholar
  39. Onsager L (1931) Reciprocal relations in irreversible processes. I. Phys Rev 37:405–426. doi: 10.1103/PhysRev.37.405 CrossRefGoogle Scholar
  40. Pin S, Suardelli M, D’Acapito F, Spinolo G, Zema M, Tarantino SC, Barba L, Ghigna P (2013) Role of interfacial energy and crystallographic orientation on the mechanism of the \(\text{ZnO} + \text{Al}_2\text{O}_3 \longrightarrow \text{ZnAl}_2\text{O}_4\) solid-state reaction: ii. reactivity of films deposited onto the sapphire (001) face. J Phys Chem C 117:6113–6119CrossRefGoogle Scholar
  41. Resel R, Tamas E, Sonderegger B, Hofbauer P, Keckes J (2003) A heating stage up to 1173 K for X-ray diffraction studies in the whole orientation space. J Appl Crystallogr 36:80–85CrossRefGoogle Scholar
  42. Rossi RC, Fulrath RM (1963) Epitaxial growth of spinel by reaction in the solid state. J Am Ceram Soc 46:145–149CrossRefGoogle Scholar
  43. Schmalzried H (1974) Solid–state reactions between oxides. In: Seltzer MS, Jaffee RI (eds) Defects and transport in oxides. Plenum Press, New York, pp 83–108CrossRefGoogle Scholar
  44. Schmalzried H (1981) Solid–state reactions. Verlag Chemie, WeinheimGoogle Scholar
  45. Stampe PAS, Bullock M, Tucker WP, Kennedy RJ (1999) Growth of MgO thin films on m-, a-, c- and r-plane sapphire by laser ablation. J Phys D Appl Phys 32:1778–1787CrossRefGoogle Scholar
  46. Wang F, Miller S, Wördenweber R (1993) Large-area epitaxial MgO buffer layers on sapphire substrates for Y-Ba-Cu-O film deposition. Thin Solid Films 232:232–236CrossRefGoogle Scholar
  47. Watson EB, Price JD (2002) Kinetics of the reaction MgO + \(\text{Al}_2\text{O}_3 \longrightarrow \text{MgAl}_2\text{O}_4\) and Al-Mg interdiffusion in spinel at \(1200\text{-}2000^{\circ}\text{C}\) and 1.0 to 4.0 GPa. Geochim Cosmochim Ac 66:2123–2138. doi: 10.1016/S0016-7037(02)00827-X CrossRefGoogle Scholar
  48. Whitney WP II, Stubican VS (1971) Interdiffusion studies in the system \(\text{MgO-Al}_2\text{O}_3\). J Phys Chem Solids 32:305–312CrossRefGoogle Scholar
  49. Wirth R (2004) Focused ion beam (FIB): a novel technology for advanced application of micro- and nanoanalysis in geosciences and applied mineralogy. Eur J Mineral 16:863–876CrossRefGoogle Scholar
  50. Wirth R (2009) Focused ion beam (FIB) combined with SEM and TEM: advanced analytical tools for studies of chemical composition, microstructure and crystal structure in geomaterials on a nanometre scale. Chem Geol 261:217–229CrossRefGoogle Scholar
  51. Zhang P, Debroy T, Seetharaman S (1996) Interdiffusion in the \(\text{MgO-Al}_2\text{O}_3\) spinel with or without some dopants. Metall Mater Trans A 27A:2105–2114CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • L. C. Götze
    • 1
    Email author
  • R. Abart
    • 2
  • R. Milke
    • 1
  • S. Schorr
    • 1
    • 3
  • I. Zizak
    • 3
  • R. Dohmen
    • 4
  • R. Wirth
    • 5
  1. 1.Institute of Geological SciencesFreie Universität BerlinBerlinGermany
  2. 2.Department of Lithospheric ResearchUniversity of ViennaViennaAustria
  3. 3.Helmholtz Center Berlin for Materials and Energy GmbHBerlinGermany
  4. 4.Institute of Geology, Mineralogy and GeophysicsRuhr-Universität BochumBochumGermany
  5. 5.GFZ German Research Centre for GeosciencesPotsdamGermany

Personalised recommendations