Advertisement

Physics and Chemistry of Minerals

, Volume 41, Issue 8, pp 617–631 | Cite as

Static elasticity of cordierite II: effect of molecular CO2 channel constituents on the compressibility

  • K. S. ScheidlEmail author
  • G. D. Gatta
  • T. Pippinger
  • B. Schuster
  • C. Trautmann
  • R. Miletich
Original Paper
  • 163 Downloads

Abstract

Two natural CO2-rich cordierite samples (1.00 wt% CO2, 0.38 wt% H2O, and 1.65 wt% CO2, 0.15 wt% H2O, respectively) were investigated by means of Raman spectroscopy and single-crystal X-ray diffraction at ambient and high pressures. The effect of heavy-ion irradiation (Au 2.2 GeV, fluence of 1 × 1012 ions cm−2) on the crystal structure was investigated to characterize the structural alterations complementary to results reported on hydrous cordierite. The linear CO2 molecules sustained irradiation-induced breakdown with small CO2-to-CO conversion rates in contrast to the distinct loss of channel H2O. The maximum CO2 depletion rate corresponds to ~12 ± 5 % (i.e. ~0.87 and ~1.49 wt% CO2 according to the two samples, respectively). The elastic properties of CO2-rich cordierite reveal stiffening due to the CO2 molecules (non-irradiated: isothermal bulk modulus K 0 = 120.3 ± 3.7 GPa, irradiated: K 0 = 109.7 ± 3.7 GPa), but show the equivalent effect of hydrous cordierite to get softer when irradiated. The degree of anisotropy of axial compressibilities and the anomalous elastic softening at increasing pressure agrees with those reported for hydrous cordierite. Nevertheless, the experimental high-pressure measurements using ethanol–methanol reveal a small hysteresis between compression and decompression, together with the noticeable effect of pressure-induced over-hydration at pressures between 4 and 5 GPa.

Keywords

Cordierite Molecular CO2 Heavy-ion irradiation Equation-of-state Comparative static compressibility Pressure-induced over-hydration 

Notes

Acknowledgments

We thank Thomas Armbruster (Bern), Thomas Malcherek (Hamburg), and Carl. A. Francis (Harvard Mineralogical Museum) for providing us with the CO2-rich cordierite sample material, Andreas Wagner for the careful preparation of crystal thin sections, Ilse Glass for performing EDX analyses, and Eva-Maria Zeiringer for measurements of individual data points on sample cn. Financial support through start-up funding of the University of Vienna (Grant BE532003) is gratefully acknowledged. Finally we thank the two reviewers for their valuable suggestions and great effort, which significantly improved the manuscript.

References

  1. Agilent (2012) Crysalis Pro: user manual. Agilent Technologies, YarntonGoogle Scholar
  2. Aines RD, Rossman GR (1984) The high temperature behavior of water and carbon dioxide in cordierite and beryl. Am Mineral 69:319–327Google Scholar
  3. Angel RJ (2000) Equations of state. In: Hazen RM, Downs RT (eds) High-temperature and high-pressure crystal chemistry. Rev Mineral Geochem 41:35–60Google Scholar
  4. Angel RJ, Finger LW (2011) Single: a program to control single-crystal diffractometers. J Appl Crystallogr 44:247–251CrossRefGoogle Scholar
  5. Angel RJ, Allan DR, Miletich R, Finger LW (1997) The use of quartz as an internal pressure standard in high pressure crystallography. J Appl Crystallogr 30:461–466CrossRefGoogle Scholar
  6. Armbruster T (1985) Ar, N2, and CO2 in the structural cavities of cordierite, and optical and X-ray single-crystal study. Phys Chem Miner 12:233–245Google Scholar
  7. Armbruster T (1986) Role of Na in the structure of low-cordierite: a single-crystal X-ray study. Am Mineral 71:746–757Google Scholar
  8. Armbruster T, Bloss FD (1980) Channel CO2 in cordierite. Nature 286:140–141CrossRefGoogle Scholar
  9. Armbruster T, Bloss FD (1982) Orientation and effects of channel H2O and CO2 in cordierite. Am Mineral 67:284–291Google Scholar
  10. Armbruster T, Schreyer W, Hoefs J (1982) Very high CO2 cordierite from Norwegian Lapland: mineralogy, petrology, and carbon isotopes. Contrib Mineral Petrol 81:262–267CrossRefGoogle Scholar
  11. Bertoldi C, Proyer A, Garbe-Schönberg D, Behrens H, Dachs E (2004) Comprehensive chemical analyses of natural cordierites: implications for exchange mechanisms. Lithos 78:389–409CrossRefGoogle Scholar
  12. Bul’bak TA, Shvedenkov GY (2005) Experimental study on incorporation of C–H–O–N fluid components in Mg-cordierite. Eur J Mineral 17:829–838CrossRefGoogle Scholar
  13. Carey JW, Navrotsky A (1992) The molar enthalpy of dehydration of cordierite. Am Mineral 77:930–936Google Scholar
  14. Chervin JC, Canny B, Mancinelli M (2002) Ruby-spheres as pressure gauge for optically transparent high pressure cells. High Press Res 21:305–314CrossRefGoogle Scholar
  15. Cohen J, Ross F, Gibbs GV (1977) An X-ray and neutron diffraction study of hydrous low cordierite. Am Mineral 62:67–78Google Scholar
  16. Gatta GD (2008) Does porous mean soft? On the elastic behaviour and structural evolution of zeolites under pressure. Z Kristallogr 223:160–170CrossRefGoogle Scholar
  17. Gatta GD (2010) Extreme deformation mechanisms in open-framework silicates at high-pressure: evidence of anomalous inter-tetrahedral angles. Microporous Mesoporous Mater 128:78–84CrossRefGoogle Scholar
  18. Geiger CA, Rager H, Czank M (2000a) Cordierite: III. The site occupation and concentration of Fe3+. Contrib Mineral Petrol 140:344–352CrossRefGoogle Scholar
  19. Geiger CA, Armbruster T, Khomenko V, Quartieri S (2000b) Cordierite: I. The coordination of Fe2+. Am Mineral 85:1255–1264Google Scholar
  20. Giampaolo C, Putnis A (1989) The kinetics of dehydration and order–disorder of molecular H2O in Mg-cordierite. Eur J Mineral 1:193–202CrossRefGoogle Scholar
  21. Goldman DS, Rossmann GR (1977) Channel constituents in cordierite. Am Mineral 62:1144–1157Google Scholar
  22. Haefeker U, Kaindl R, Tropper P (2013) Improved calibrations for Raman-spectroscopic determinations of CO2 in cordierite using three excitation wavelengths (488, 515 and 633 nm). Eur J Mineral. doi: 10.1127/0935-1221/2013/0025-2276 Google Scholar
  23. Hejny C, Miletich R, Jasser A, Schouwink P, Crichton W, Kahlenberg V (2012) Second order P6c2–P31c structural transition and structural crystallography of the cyclosilicate benitoite, BaTiSi3O9, at high pressure. Am Mineral 97:1749–1763CrossRefGoogle Scholar
  24. Kaindl R, Tropper P, Deibl I (2006) A semiquantitative technique for determination of CO2 in cordierite by Raman spectroscopy in thin sections. Eur J Mineral 18:331–335CrossRefGoogle Scholar
  25. Kaindl R, Többens D, Haefeker U (2011) Quantum-mechanical calculations of the Raman spectra of Mg- and Fe-cordierite. Am Mineral 96:1568–1574CrossRefGoogle Scholar
  26. Khomenko VM, Langer K (1999) Aliphatic hydrocarbons in structural channels of cordierite: a first evidence from polarized single-crystal IR-absorption spectroscopy. Am Mineral 84:1181–1185Google Scholar
  27. Khomenko VM, Langer K, Geiger CA (2001) Structural locations of the iron ions in cordierite: a spectroscopic study. Contrib Mineral Petrol 141:381–396CrossRefGoogle Scholar
  28. Kolesov BA (2006) Raman spectra of single H2O molecules isolated in cavities of crystals. J Struct Chem 47:21–34CrossRefGoogle Scholar
  29. Kolesov BA, Geiger CA (2000) Cordierite II. The role of CO2 and H2O. Am Mineral 85:1265–1274Google Scholar
  30. Krickl R, Nasdala L, Grambole D, Kaindl R (2009) Radio-induced alteration in cordierite—implications for petrology, gemology and material science. Geophys Res Abstr Vol 11, EGU2009-2657-2, EGU General Assembly 2009Google Scholar
  31. Le Breton N (1989) Infrared investigations of CO2-bearing cordierites. Contrib Mineral Petrol 103:387–396CrossRefGoogle Scholar
  32. Le Breton N, Schreyer W (1993) Experimental CO2 incorporation into Mg-cordierite: nonlinear behaviour of the system. Eur J Mineral 5:427–438CrossRefGoogle Scholar
  33. Likhacheva AY, Goryainov SV, Krylov AS, Bul’bak TA, Prasad PSR (2012) Raman spectroscopy of natural cordierite at high water pressure up to 5 GPa. J Raman Spectrosc 43:559–563CrossRefGoogle Scholar
  34. Likhacheva AY, Goryainov SV, Bul’bak TA (2013) An X-ray diffraction study of the pressure-induced hydration in cordierite at 4–5 GPa. Am Mineral 98:181–186CrossRefGoogle Scholar
  35. Malcherek T, Domeneghetti MC, Tazzoli V, Ottolini L, McCammon C, Carpenter MA (2001) Structural properties of ferromagnesian cordierites. Am Mineral 86:66–79Google Scholar
  36. Mao HK, Xu J, Bell PM (1986) Calibration of the ruby pressure scale to 800 kbars under quasihydrostatic conditions. J Geophys Res 9:4673–4676CrossRefGoogle Scholar
  37. Miletich R, Reifler H, Kunz M (1999) The “ETH diamond-anvil cell” design for single-crystal XRD at non-ambient conditions. Acta Crystallogr A55 Abstr P08.CC.001Google Scholar
  38. Miletich R, Allan DR, Kuhs WF (2000) High-pressure single-crystal techniques. In Hazen RM (ed) High-temperature and high-pressure crystal chemistry. Rev Mineral Geochem 41:445–520Google Scholar
  39. Miletich R, Gatta GD, Redhammer GJ, Burchard M, Meyer HP, Weikusat C, Rotiroti N, Glasmacher UA, Trautmann C, Neumann R (2010) Structure alterations in microporous (Mg, Fe)2Al4Si5O18 crystals induced by energetic heavy-ion irradiation. J Solid State Chem 183:2372–2381CrossRefGoogle Scholar
  40. Miletich R, Gatta GD, Willi T, Mirwald PW, Lotti P, Merlini M, Rotiroti N, Loerting T (2014a) Cordierite under hydrostatic compression: anomalous elastic behavior as a precursor for a pressure-induced phase transition. Am Mineral 99:479–493CrossRefGoogle Scholar
  41. Miletich R, Scheidl KS, Schmitt M, Moissl AP, Pippinger T, Gatta GD, Schuster B, Trautmann C (2014b) Comparative elasticity of cordierite I: effect of heavy-ion irradiation on the compressibility of hydrous cordierite. Phys Chem Miner. doi: 10.1007/s00269-014-0671-3 Google Scholar
  42. Mirwald PW, Jochum C, Maresch WV (1986) Rate studies on hydration and dehydration of synthetic Mg-cordierite. Mater Sci Forum 7:113–122CrossRefGoogle Scholar
  43. Nasdala L, Wildner M, Wirth R, Groschopf N, Pal DC, Möller A (2006) Alpha particle haloes in chlorite and cordierite. Mineral Petrol 86:1–27CrossRefGoogle Scholar
  44. Petersen OV, Secher K (1993) The minerals of Greenland. Mineral Rec 24:1–65Google Scholar
  45. Prencipe M, Scanavino I, Nestola F, Merlini M, Civalleri B, Bruno M, Dovesi R (2011) High-pressure thermo-elastic properties of beryl (Al4Be6Si12O36) from ab initio calculations, and observations about the source of thermal expansion. Phys Chem Miner 38:223–239Google Scholar
  46. Selkregg KR, Bloss FD (1980) Cordierites: compositional controls of ∆ cell parameters, and optical properties. Am Mineral 65:522–533Google Scholar
  47. Sheldrick GM (1997) SHELXS-97. Program for the solution of crystal structures. University of Göttingen, GermanyGoogle Scholar
  48. Weikusat C, Glasmacher UA, Miletich R, Neumann R, Trautmann C (2008) Raman spectroscopy of heavy ion induced damage in cordierite. Nucl Instrum Methods Phys Res B 266:2990–2993CrossRefGoogle Scholar
  49. Weikusat C, Miletich R, Glasmacher UA, Trautmann C, Neumann R (2010) Heavy ion irradiation on crystallographically oriented cordierite and the conversion of molecular CO2 to CO—a Raman spectroscopic study. Phys Chem Miner 37:417–424Google Scholar
  50. Wilson AJC, Prince E (1999) International tables for crystallography, vol C, mathematical, physical and chemical tables, 3rd edn. Kluwer, Dordrecht, p 578Google Scholar
  51. Winkler B, Milman V, Payne MC (1994a) Orientation, location, and total energy of hydration of channel H2O in cordierite investigated by ab initio total energy calculations. Am Mineral 79:200–204Google Scholar
  52. Winkler B, Coddens G, Hennion B (1994b) Movement of channel H2O in cordierite observed with quasi-elastic neutron scattering. Am Mineral 79:801–808Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • K. S. Scheidl
    • 1
    Email author
  • G. D. Gatta
    • 2
  • T. Pippinger
    • 1
  • B. Schuster
    • 3
    • 4
    • 5
    • 6
  • C. Trautmann
    • 3
    • 4
  • R. Miletich
    • 1
  1. 1.Institut für Mineralogie und KristallographieUniversität WienViennaAustria
  2. 2.Dipartimento di Scienze della TerraUniversitá degli Studi di MilanoMilanItaly
  3. 3.GSI Helmholtzzentrum für SchwerionenforschungDarmstadtGermany
  4. 4.Material- und GeowissenschaftenTechnische Universität DarmstadtDarmstadtGermany
  5. 5.Institut für FestkörperphysikTechnische Universität DarmstadtDarmstadtGermany
  6. 6.Areva GmbHErlangenGermany

Personalised recommendations