Physics and Chemistry of Minerals

, Volume 41, Issue 6, pp 419–429 | Cite as

Compressibility of Ca3Al2Si3O12 perovskite up to 55 GPa

  • Steeve Gréaux
  • Denis Andrault
  • Laurent Gautron
  • Nathalie Bolfan-Casanova
  • Mohamed Mezouar
Original Paper


Compressibility of perovskite-structured Ca3Al2Si3O12 grossular (GrPv) was investigated at high pressure and high temperature by means of angle-dispersive powder X-ray diffraction using a laser-heated diamond anvil cell. We observed the Pbnm orthorhombic distortion for the pure phase above 50 GPa, whereas below this pressure, Al-bearing CaSiO3 perovskite coexists with an excess of corundum. GrPv has a bulk modulus (K 0 = 229 ± 5 GPa; \(K_{0}^{{\prime }}\) fixed to 4) almost similar to that reported for pure CaSiO3 perovskite. Its unit-cell volume extrapolated to ambient conditions (V 0 = 187.1 ± 0.4 Å3) is found to be ~2.5 % larger than for the Al-free phase. We observe an increasing unit-cell anisotropy with increasing pressure, which could have implications for the shear properties of Ca-bearing perovskite in cold slabs subducted into the Earth’s mantle.


Grossular garnet CaSiO3 perovskite Aluminum High pressure In situ X-ray diffraction 



The authors thank N. Guignot for his helpful assistance in the experiments on ID30, at the synchrotron radiation facility, ESRF (Project HS2330). We are grateful for assistance of M. A. Bouhifd in the preparation of starting materials. We thank M. Nishi, X. Wang and two anonymous reviewers for their constructive comments on the manuscript. We are grateful to C. McCammon for handling the manuscript. This work was supported by the program ATIP CNRS INSU.


  1. Andrault D, Fiquet G (2000) Synchrotron radiation and laser heating in a diamond anvil cell. Rev Sci Instrum 72:1283–1288. doi: 10.1063/1.1343866 CrossRefGoogle Scholar
  2. Andrault D, Neuville DR, Flank AM, Wang Y (1998) Cation sites in Al-rich MgSiO3 perovskites. Am Miner 83:1045–1053Google Scholar
  3. Andrault D, Bolfan-Casanova N, Guignot N (2001) Equation of state of lower mantle (Al, Fe)-MgSiO3 perovskite. Earth Planet Sci Lett 193:501–508CrossRefGoogle Scholar
  4. Asahara Y, Ohtani E, Kondo T, Kubo T, Miyajima N, Nagase T, Fujino K, Yagi T, Kikegawa T (2005) Formation of metastable cubic-perovskite in high-pressure phase transformation of Ca(Mg, Fe, Al)Si2O6. Am Miner 90:457–462. doi: 10.2138/am.2005.1649 CrossRefGoogle Scholar
  5. Bläß UW, Langenhorst F, Frost DJ, Seifert F (2007) Oxygen deficient perovskites in the system CaSiO3–CaAlO2.5 and implications for the Earth’s interior. Phys Chem Miner 34:363–376. doi: 10.1007/s00269-007-0154-x CrossRefGoogle Scholar
  6. Bolfan-Casanova N, Andrault D, Amiguet E, Guignot N (2009) Equation of state and post-stishovite transformation of Al-bearing silica up to 100 GPa and 3000 K. Phys Earth Planet Inter 174:70–77. doi: 10.1016/j.pepi.2008.06.024 CrossRefGoogle Scholar
  7. Brodholt JP (2000) Pressure-induced changes in the compression mechanism of aluminous perovskite in the Earth’s mantle. Nature 407:620–622CrossRefGoogle Scholar
  8. Caracas R, Wentzcovitch R, Price GD, Brodholt JP (2005) CaSiO3 perovskite at lower mantle pressures. Geophys Res Lett 32:1–5. doi: 10.1029/2004gl022144 Google Scholar
  9. Dorfman SM, Shieh SR, Meng Y, Prakapenka VB, Duffy TS (2012) Synthesis and equation of state of perovskites in the (Mg, Fe)3Al2Si3O12. Earth Planet Sci Lett 357–358:194–202. doi: 10.1016/j.epsl.2012.09.024 CrossRefGoogle Scholar
  10. Funamori N, Jeanloz R, Miyajima N, Fujino K (2000) Mineral assemblages of basalt in the lower mantle. J Geophys Res 105:26037–26043CrossRefGoogle Scholar
  11. Gréaux S, Kono Y, Nishiyama N, Kunimoto T, Wada K, Irifune T (2011a) P–V–T equation of state of Ca3Al2Si3O12 grossular garnet. Phys Chem Miner 38:85–94. doi: 10.1007/s00269-010-0384-1 CrossRefGoogle Scholar
  12. Gréaux S, Nishiyama N, Kono Y, Gautron L, Ohfuji H, Kunimoto T, Menguy N, Irifune T (2011b) Phase transformations of Ca3Al2Si3O12 grossular garnet to the depths of the Earth’s mantle transition zone. Phys Earth Planet Inter 185:89–99. doi: 10.1016/j.pepi.2011.02.001 CrossRefGoogle Scholar
  13. Irifune T, Koizumi T, Ando JI (1994) An experimental study of the garnet-perovskite transformation in the system MgSiO3–Mg3Al2Si3O12. Phys Earth Planet Inter 96:147–157CrossRefGoogle Scholar
  14. Ito E, Kubo A, Katsura T, Akaogi M, Fujita T (1998) High-pressure transformation of pyrope (Mg3Al2Si3O12) in a sintered diamond cubic anvil assembly. Geophys Res Lett 25:821–824CrossRefGoogle Scholar
  15. Jephcoat AP (1998) Rare-gas solids in the earth’s deep interior. Nature 393:355–358CrossRefGoogle Scholar
  16. Jung DY, Oganov AR (2005) Ab initio study of the high-pressure behavior of CaSiO3 perovskite. Phys Chem Miner 32:146–153. doi: 10.1007/s00269-005-0453-z CrossRefGoogle Scholar
  17. Kanzaki M, Stebbins JF, Xianyu X (1991) Characterization of quenched high pressure phases in CaSiO3 system by XRD and 29Si NMR. Geophys Res Lett 18:463–466CrossRefGoogle Scholar
  18. Kawai K, Tsuchiya T (2012) First principles investigations on the elasticity and phase stability of grossular garnet. J Geophys Res 117:B02202. doi: 10.1029/2011JB008529 Google Scholar
  19. Kojitani H, Katsura T, Akaogi M (2007) Aluminum substitution mechanisms in perovskite-type MgSiO3: an investigation by Rietveld analysis. Phys Chem Miner 34:257–267. doi: 10.1007/s00269-007-0144-z CrossRefGoogle Scholar
  20. Kojitani H, Wakabayashi Y, Tejima Y, Kato C, Haraguchi M, Akaogi M (2009) High-pressure phase relations in Ca2AlSiO5.5 and energetics of perovskite-related compounds with oxygen defects in the Ca2Si2O6–Ca2Al2O5 join. Phys Earth Planet Inter 173:349–353. doi: 10.1016/j.pepi.2009.02.001 CrossRefGoogle Scholar
  21. Komabayashi T, Hirose K, Sata N, Ohishi Y, Dubrovinsky LS (2007) Phase transition in CaSiO3 perovskite. Earth Planet Sci Lett 260:564–569. doi: 10.1016/j.epsl.2007.06.015 CrossRefGoogle Scholar
  22. Kubo A, Akaogi M (2000) Post-garnet transitions in the system Mg4Si4O12–Mg3Al2Si3O12 up to 28 GPa: phase relations of garnet, ilmenite and perovskite. Phys Earth Planet Inter 121:85–102CrossRefGoogle Scholar
  23. Kubo T, Ohtani E, Kondo T, Kato T, Toma M, Hoyosa T, Sano A, Kikegawa T, Nagase T (2002) Metastable garnet in oceanic crust at the top of the lower mantle. Nature 420:803–806CrossRefGoogle Scholar
  24. Kubo T, Ohtani E, Kato T et al (2008) Kinetics of the post-garnet transformation: implications for density and rheology of subducting slabs. Phys Earth Planet Inter 170:181–192. doi: 10.1016/j.pepi.2008.04.018 CrossRefGoogle Scholar
  25. Kurashina T, Hirose K, Ono S, Sata N, Ohishi Y (2004) Phase transition in Al-bearing CaSiO3 perovskite: implications for seismic discontinuities in the lower mantle. Phys Earth Planet Inter 145:67–74. doi: 10.1016/j.pepi.2004.02.005 CrossRefGoogle Scholar
  26. Larson AC, Von Dreele RB (2000) GSAS general structure analysis system. Operation manual. Los Alamos Natl Lab LAUR 86–748:1–179Google Scholar
  27. Le Bail A, Duroy H, Fourquet JL (1988) Ab-initio structure determination of LiSbWO6 by X-ray powder diffraction. Mat Res Bull 23:447–452CrossRefGoogle Scholar
  28. Li L, Weidner DJ, Brodholt J, Alfè D, Price DG, Caracas R, Wentzcovitch R (2006) Elasticity of CaSiO3 perovskite at high pressure and high temperature. Phys Earth Planet Inter 155:249–259. doi: 10.1016/j.pepi.2005.12.006 CrossRefGoogle Scholar
  29. Navrotsky A, Schoenitz M, Kojitani H, Xu H, Zhang J, Weidner DJ, Jeanloz R (2003) Aluminum in magnesium silicate perovskite: formation, structure, and energetics of magnesium-rich defect solid solutions. J Geophys Res 108:1–11Google Scholar
  30. Nishi M, Irifune T, Ohfuji H, Tange Y (2012) Intracrystalline nucleation during the post-garnet transformation under large overpressure conditions in deep subducting slabs. Geophys Res Lett 39:L23302. doi: 10.1029/2012GL053915 Google Scholar
  31. Nishi M, Kubo T, Ohfuji H, Kato T, Nishihara Y, Irifune T (2013) Slow Si–Al interdiffusion in garnet and stagnation of subducting slabs. Earth Planet Sci Lett 361:44–49. doi: 10.1016/j.epsl.2012.11.022 CrossRefGoogle Scholar
  32. Noguchi M, Komabayashi T, Hirose K, Ohishi Y (2013) High-temperature compression experiments of CaSiO3 perovskite to lowermost mantle conditions and its thermal equation of state. Phys Chem Miner 40:81–91. doi: 10.1007/s00269-012-0549-1 CrossRefGoogle Scholar
  33. Oguri K, Funamori N, Uchida T, Miyajima N, Yagi T, Fujino K (2000) Post-garnet transition in a natural pyrope: a multi-anvil study based on in situ X-ray diffraction and transmission electron microscopy. Phys Earth Planet Inter 122:175–186CrossRefGoogle Scholar
  34. Osborn EF, Muan A (1960) The system CaO-Al2O3-SiO2. Plate No. 1 in Phase equilibrium diagrams of oxide systems 219Google Scholar
  35. Panero WR, Akber-Knutson S, Stixrude L (2006) Al2O3 incorporation in MgSiO3 perovskite and ilmenite. Earth Planet Sci Lett 252:152–161. doi: 10.1016/j.epsl.2006.09.036 CrossRefGoogle Scholar
  36. Ricolleau A, Fei Y, Cottrell E, Watson H, Deng L, Zhang L, Fiquet G, Auzende A-L, Roskosz M, Morard G, Prakapenka V (2009) Density profile of pyrolite under the lower mantle conditions. Geophys Res Lett 36. doi: 10.1029/2008GL036759
  37. Serghiou G, Zerr A, Chopelas A, Boehler R (1998) The transition of pyrope to perovskite. Phys Chem Miner 25:193–196CrossRefGoogle Scholar
  38. Shim S-H, Duffy TS, Shen G (2000) The equation of state of CaSiO3 perovskite to 108 GPa at 300 K. Phys Earth Planet Inter 120:327–338CrossRefGoogle Scholar
  39. Shim S-H, Jeanloz R, Duffy TS (2002) Tetragonal structure of CaSiO3 perovskite above 20 GPa. Geophys Res Lett 29. doi: 10.1029/2002GL016148
  40. Takafuji N, Yagi T, Miyajima N, Sumita T (2002) Study on Al2O3 content and phase stability of aluminous-CaSiO3 perovskite at high pressure and temperature. Phys Chem Miner 29:532–537. doi: 10.1007/s00269-002-0271-5 CrossRefGoogle Scholar
  41. Tateno S (2005) Phase relations in Mg3Al2Si3O12 to 180 GPa: effect of Al on post-perovskite phase transition. Geophys Res Lett 32:L15306. doi: 10.1029/2005GL023309 CrossRefGoogle Scholar
  42. Toby BH (2001) EXPGUI, a graphical user interface for GSAS. J Appl Crystallogr 34:210–213CrossRefGoogle Scholar
  43. Uchida T, Wang Y, Nishiyama N, Funakoshi KI, Kaneko H, Nozawa A, Von Dreele RB, Rivers ML, Sutton SR, Yamada A, Kunimoto T, Irifune T, Inoue T, Li B (2009) Non-cubic crystal symmetry of CaSiO3 perovskite up to 18 GPa and 1600 K. Earth Planet Sci Lett 282:268–274. doi: 10.1016/j.epsl.2009.03.027 CrossRefGoogle Scholar
  44. Walter MJ, Kubo A, Yoshino T, Brodholt J, Koga KT, Ohishi Y (2004) Phase relations and equation-of-state of aluminous Mg-silicate perovskite and implications for Earth’s lower mantle. Earth Planet Sci Lett 222:501–516. doi: 10.1016/j.epsl.2004.03.014 CrossRefGoogle Scholar
  45. Walter MJ, Trønnes RG, Armstrong LS, Lord OT, Caldwell WA, Clark SM (2006) Subsolidus phase relations and perovskite compressibility in the system MgO–AlO1.5–SiO2 with implications for Earth’s lower mantle. Earth Planet Sci Lett 248:77–89. doi: 10.1016/j.epsl.2006.05.017 CrossRefGoogle Scholar
  46. Wang Y, Weidner DJ, Guyot F (1996) Thermal equation of state of CaSiO3 perovskite. J Geophys Res 101:661–672CrossRefGoogle Scholar
  47. Yusa H, Yagi T, Shimobayashi N (1995) A new unquenchable high-pressure polymorph of Ca3Al2Si3O12. Phys Earth Planet Inter 92:25–31CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Steeve Gréaux
    • 1
    • 2
  • Denis Andrault
    • 3
  • Laurent Gautron
    • 4
  • Nathalie Bolfan-Casanova
    • 3
  • Mohamed Mezouar
    • 5
  1. 1.Geodynamics Research CenterEhime UniversityMatsuyamaJapan
  2. 2.Earth-Life Science InstituteTokyo Institute of TechnologyTokyoJapan
  3. 3.Laboratoire Magmas et VolcansUniversité Blaise PascalClermont-FerrandFrance
  4. 4.Laboratoire des Géomateriaux et Géologie de l’IngénieurUniversité Paris-EstMarne la ValléeFrance
  5. 5.European Synchrotron Radiation FacilityGrenobleFrance

Personalised recommendations