Advertisement

Physics and Chemistry of Minerals

, Volume 41, Issue 8, pp 579–591 | Cite as

Static elasticity of cordierite I: Effect of heavy ion irradiation on the compressibility of hydrous cordierite

  • R. Miletich
  • K. S. ScheidlEmail author
  • M. Schmitt
  • A. P. Moissl
  • T. Pippinger
  • G. D. Gatta
  • B. Schuster
  • C. Trautmann
Original Paper

Abstract

The effect of ion beam irradiations on the elastic properties of hydrous cordierite was investigated by means of Raman and X-ray diffraction experiments. Oriented single crystals were exposed to swift heavy ions (Au, Bi) of various specific energies (10.0–11.1 MeV/u and 80 MeV/u), applying fluences up to 5 × 1013 ions/cm2. The determination of unit-cell constants yields a volume strain of 3.4 × 10−3 up to the maximum fluence, which corresponds to a compression of non-irradiated cordierite at ~480 ± 10 MPa. The unit-cell contraction is anisotropic (e 1 = 1.4 ± 0.1 × 10−3, e 2 = 1.5 ± 0.1 × 10−3, and e 3 = 7 ± 1 × 10−4) with the c-axis to shrink only half as much as the axes within the ab-plane. The lattice elasticity for irradiated cordierite (ϕ = 1 × 1012 ions/cm2) was determined from single-crystal XRD measurements in the diamond anvil cell. The fitted third-order Birch–Murnaghan equation-of-state parameters of irradiated cordierite (V 0 = 1548.41 ± 0.16 Å3, K 0 = 117.1 ± 1.1 GPa, ∂K/∂P = −0.6 ± 0.3) reveal a 10–11 % higher compressibility compared to non-irradiated cordierite. While the higher compressibility is attributed to the previously reported irradiation-induced loss of extra-framework H2O, the anomalous elasticity as expressed by elastic softening (β a −1 , β b −1 , β c −1  = 397 ± 9, 395 ± 28, 308 ± 11 GPa, ∂(β −1)/∂P = −4.5 ± 2.7, −6.6 ± 8.4, −5.4 ± 3.0) appears to be related to the framework stability and to be independent of the water content in the channels and thus of the ion beam exposure.

Keywords

Cordierite Heavy-ion irradiation High-pressure Raman spectroscopy Single-crystal diffraction Equation of state Static compressibility 

Notes

Acknowledgments

We thank Gerald Giester and Herta Effenberger for their help to orient crystal specimens, Andreas Wagner and Ilona Fin for the careful preparation of crystal thin sections, Ilse Glass for performing EDX analyses, Angela Ullrich for carrying out individual XRD measurement on the CORTS sample, Christian Weikusat for his support with the Raman measurements at the GSI, and Pascal Schouwink for the technical assistance on the Huber diffractometer. Financial support within the scope of the BMBF-Verbundprojekt “Ioneninduzierte Strukturumbildung” (grant 05KK7VH1) is acknowledged. Finally, we thank the two reviewers for their valuable suggestions and great effort, which significantly improved the manuscript.

References

  1. Afra B, Rodriguez MD, Trautmann C, Pakarinen OH, Djurabekova F, Nordlund K, Bierschenk T, Giulian R, Ridgway MC, Rizza G, Kirby N, Toulemonde M, Kluth P (2013) SAXS investigations of the morphology of swift heavy ion tracks in α-quartz. J Phys Condens Matter 25:45006–45015. doi: 10.1088/0953-8984/25/4/045006 CrossRefGoogle Scholar
  2. Angel RJ (2000) Equations of state. In: Hazen RM, Downs RT (eds) High-temperature and high-pressure crystal chemistry, Rev Miner Geochem 41:35–60Google Scholar
  3. Angel RJ, Finger LW (2011) Single: a program to control single-crystal diffractometers. J Appl Crystallog 44:247–251CrossRefGoogle Scholar
  4. Angel RJ, Allan DR, Miletich R, Finger LW (1997) The use of quartz as an internal pressure standard in high pressure crystallography. J Appl Crystallog 30:461–466CrossRefGoogle Scholar
  5. Angel RJ, Bujak M, Zhao J, Gatta GD, Jacobsen SJ (2007) Effective hydrostatic limits of pressure media for high-pressure crystallographic studies. J Appl Crystallog 40:26–32CrossRefGoogle Scholar
  6. Armbruster T (1985a) Crystal structure refinement, Si, Al-ordering, and twinning in “pseudo-hexagonal” Mg-cordierite. Neues Jahrbuch Miner Monatsh 6:255–267Google Scholar
  7. Armbruster T (1985b) Ar, N2, and CO2 in the structural cavities of cordierite, and optical and X-ray single-crystal study. Phys Chem Miner 12:233–245Google Scholar
  8. Bertoldi C, Proyer A, Garbe-Schönberg D, Behrens H, Dachs E (2004) Comprehensive chemical analyses of natural cordierites: implications for exchange mechanisms. Lithos 78:389–409CrossRefGoogle Scholar
  9. Bhattacharya A (1986) Some geobarometers involving cordierite in the FeO–Al2O3–SiO2 (±H2O) system: refinements, thermodynamic calibration, and applicability in granulite-facies rocks. Contrib Mineral Petrol 94:387–394CrossRefGoogle Scholar
  10. Bul’bak TA, Shvedenkov GY (2005) Experimental study on incorporation of C-H-O-N fluid components in Mg-cordierite. Eur J Miner 17:829–838CrossRefGoogle Scholar
  11. Camerucci MA, Urretavizcaya G, Castro MS, Cavalieri AL (2001) Electrical properties and thermal expansion of cordierite and cordierite-mullite materials. J Eur Ceram Soc 21:2917–2923CrossRefGoogle Scholar
  12. Chervin JC, Canny B, Mancinelli M (2002) Ruby-spheres as pressure gauge for optically transparent high pressure cells. High Pres Res 21:305–314CrossRefGoogle Scholar
  13. Daniels P, Wunder B, Sahl K, Schreyer W (1994) Changing lattice metrics of synthetic cordierites: the metastable hexagonal to orthorhombic transformation sequence during isothermal annealing. Eur J Miner 6:323–335CrossRefGoogle Scholar
  14. Geiger CA, Grams M (2003) Cordierite IV: structural heterogeneity and energetics of Mg–Fe solid solutions. Contrib Mineral Petrol 145:752–764CrossRefGoogle Scholar
  15. Haefeker U, Kaindl R, Tropper P (2012) Semi-quantitative determination of the Fe/Mg ratio in synthetic cordierite using Raman spectroscopy. Am Miner 97:1662–1669CrossRefGoogle Scholar
  16. Haefeker U, Kaindl R, Tropper P (2013) Improved calibrations for Raman-spectroscopic determinations of CO2 in cordierite using three excitation wavelengths (488, 515 and 633 nm). Eur J Miner. doi: 10.1127/0935-1221/2013/0025-2276 Google Scholar
  17. Harley SL, Thompson P, Hensen BJ, Buick IS (2002) Cordierite as a sensor of fluid conditions in high-grade metamorphism and crustal anatexis. J Metamorph Geol 20:71–86CrossRefGoogle Scholar
  18. Haussühl E, Vinograd VL, Krenzel TF, Schreuer J, Wilson DJ, Ottinger J (2011) High temperature elastic properties of Mg-cordierite: experimental studies and atomistic simulations. Z Kristallogr 226:236–253CrossRefGoogle Scholar
  19. Hejny C, Miletich R, Jasser A, Schouwink P, Crichton W, Kahlenberg V (2012) Second order Pc2-P31c structural transition and structural crystallography of the cyclosilicate benitoite, BaTiSi3O9, at high pressure. Am Miner 97:1749–1763CrossRefGoogle Scholar
  20. Hochella M, Brown G, Ross F, Gibbs G (1979) High temperature crystal chemistry of hydrous Mg- and Fe-cordierites. Am Miner 64:337–351Google Scholar
  21. Ikawa H, Otagiri T, Imai O, Suzuki M, Urabe K, Udagawa S (1986) Crystal structures and mechanism of thermal expansion of high cordierite and its solid solutions. J Am Ceram Soc 69:492–498CrossRefGoogle Scholar
  22. Kaindl R, Tropper P, Deibl I (2006) A semiquantitative technique for determination of CO2 in cordierite by Raman spectroscopy in thin sections. Eur J Miner 18:331–335CrossRefGoogle Scholar
  23. Kaindl R, Többens D, Haefeker U (2011) Quantum-mechanical calculations of the Raman spectra of Mg- and Fe-cordierite. Am Miner 96:1568–1574CrossRefGoogle Scholar
  24. Kolesov BA (2006) Raman spectra of single H2O molecules isolated in cavities of crystals. J Struct Chem 47:21–34CrossRefGoogle Scholar
  25. Kolesov A, Geiger CA (2000) Cordierite II. The role of CO2 and H2O. Am Miner 85:1265–1274Google Scholar
  26. Langer K, Schreyer W (1976) Apparent effects of molecular water on the lattice geometry of cordierite: a discussion. Am Miner 61:1036–1040Google Scholar
  27. Lee WE, Mitchell TE, Heuer AH (1986) Electron beam-induced phase decomposition of cordierite and enstatite. Radiat Eff 97:115–126CrossRefGoogle Scholar
  28. Likhacheva AY, Goryainov SV, Krylov AS, Bul’bak TA, Prasad PSR (2012) Raman spectroscopy of natural cordierite at high water pressure up to 5 GPa. J Raman Spectros 43:559–563CrossRefGoogle Scholar
  29. Likhacheva AY, Goryainov SV, Bul’bak TA (2013) An X-ray diffraction study of the pressure-induced hydration in cordierite at 4–5 GPa. Am Miner 98:181–186CrossRefGoogle Scholar
  30. Malcherek T, Domeneghetti MC, Tazzoli V, Ottolini L, McCammon C, Carpenter MA (2001) Structural properties of ferromagnesian cordierites. Am Miner 86:66–79Google Scholar
  31. Mao HK, Xu J, Bell PM (1986) Calibration of the ruby pressure scale to 800 kbars under quasi-hydrostatic conditions. J Geophys Res 9:4673–4676CrossRefGoogle Scholar
  32. McMillan P, Putnis A, Carpenter MA (1984) A Raman spectroscopic study of Al-Si ordering in synthetic magnesium cordierite. Phys Chem Miner 10:256–260Google Scholar
  33. Miletich R, Reifler H, Kunz M (1999) The “ETH diamond-anvil cell” design for single-crystal XRD at non-ambient conditions. Acta Crystallogr A55: Abstr. P08.CC.001Google Scholar
  34. Miletich R, Allan DR, Kuhs WF (2000) High-pressure single-crystal techniques. In Hazen RM (ed) High-temperature and high-pressure crystal chemistry. Rev Miner Geochem 41:445–520Google Scholar
  35. Miletich R, Gatta GD, Redhammer GJ, Burchard M, Meyer HP, Weikusat C, Rotiroti N, Glasmacher UA, Trautmann C, Neumann R (2010) Structure alterations in microporous (Mg, Fe)2Al4Si5O18 crystals induced by energetic heavy-ion irradiation. J Solid State Chem 183:2372–2381CrossRefGoogle Scholar
  36. Miletich R, Gatta GD, Willi T, Mirwald PW, Lotti P, Merlini M, Rotiroti N, Loerting T (2014) Cordierite under hydrostatic compression: anomalous elastic behaviour as a precursor for a pressure-induced phase transition. Am Miner 99:479–493Google Scholar
  37. Miro S, Grebille D, Chateigner D, Pelloquin D, Stoquert J-P, Grob J–J, Costantini J-M, Studer F (2005) X-ray diffraction study of damage induced by swift heavy ion irradiation in fluorapatite. Nucl Instrum Meth Phys Res B 227:306–318CrossRefGoogle Scholar
  38. Mirwald PW (1981) Thermal expansion of anhydrous Mg-cordierite between 25 and 900 °C. Phys Chem Miner 7:268–270Google Scholar
  39. Nasdala L, Wildner M, Wirth R, Groschopf N, Pal DC, Möller A (2006) Alpha particle haloes in chlorite and cordierite. Mineral Petrol 86:1–27CrossRefGoogle Scholar
  40. Putnis A (1980a) Order-modulated structures and the thermodynamics of cordierite reactions. Nature 287:128–131CrossRefGoogle Scholar
  41. Putnis A (1980b) The distortion index in anhydrous Mg cordierite. Contrib Mineral Petrol 74:135–141CrossRefGoogle Scholar
  42. Ramos SMM, Clerc C, Canut B, Chaumont J, Toulemonde M, Bernas H (2000) Damage kinetics in MeV gold ion-irradiated crystalline quartz. Nucl Instrum Meth Phys Res B 31:166–167Google Scholar
  43. Redfern SAT, Salje EKH, Maresch W, Schreyer W (1989) X-ray powder diffraction and infrared study of the hexagonal to orthorhombic phase transition in K-bearing cordierite. Am Miner 74:1293–1299Google Scholar
  44. Schouwink P, Miletich R, Ullrich A, Glasmacher U, Trautmann C, Neumann R, Kohn B (2010) Ion tracks in apatite at high pressures: the effect of crystallographic track orientation on the elastic properties of fluorapatite under hydrostatic compression. Phys Chem Miner 37:371–387Google Scholar
  45. Selkregg KR, Bloss FD (1980) Cordierites: compositional controls of Δ, cell parameters and optical properties. Am Miner 65:522–533Google Scholar
  46. Ullrich A, Schranz W, Miletich R (2009) The nonlinear anomalous lattice elasticity associated with the pressure-induced phase transition in spodumene: a high-precision static compression study. Phys Chem Miner 36:545–555Google Scholar
  47. Vetter J, Scholz R, Dobrev D, Nistor L (1998) HREM investigation of latent tracks in GeS and mica induced by high energy ions. Nucl Instrum Meth Phys Res B 141:747–752CrossRefGoogle Scholar
  48. Wang SX, Wang LM, Ewing RC, Doremus RH (1998) Ion beam-induced amorphization in MgO–Al2O3–SiO2. I. Experimental and theoretical basis. J Non Cryst Solids 238:198–213CrossRefGoogle Scholar
  49. Weikusat C, Glasmacher UA, Miletich R, Neumann R, Trautmann C (2008) Raman spectroscopy of heavy ion induced damage in cordierite. Nucl Instrum Meth Phys Res B 266:2990–2993CrossRefGoogle Scholar
  50. Weikusat C, Miletich R, Glasmacher UA, Trautmann C, Neumann R (2010) Heavy ion irradiation on crystallographically oriented cordierite and the conversion of molecular CO2 to CO—a Raman spectroscopic study. Phys Chem Miner 37:417–424Google Scholar
  51. Ziegler JF, Biersack JP, Littmark U (1985) The stopping and range of ions in solids. Pergamon Press, New York, http://www.srim.org/

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • R. Miletich
    • 1
  • K. S. Scheidl
    • 1
    Email author
  • M. Schmitt
    • 2
    • 7
  • A. P. Moissl
    • 2
    • 8
  • T. Pippinger
    • 1
  • G. D. Gatta
    • 3
  • B. Schuster
    • 4
    • 5
    • 6
    • 9
  • C. Trautmann
    • 4
    • 5
  1. 1.Institut für Mineralogie und KristallographieUniversität WienViennaAustria
  2. 2.Institut für GeowissenschaftenUniversität HeidelbergHeidelbergGermany
  3. 3.Dipartimento di Scienze della TerraUniversitá degli Studi di MilanoMilanItaly
  4. 4.GSI Helmholtzzentrum für SchwerionenforschungDarmstadtGermany
  5. 5.Material- und GeowissenschaftenTechnische Universität DarmstadtDarmstadtGermany
  6. 6.Institut für FestkörperphysikTechnische Universität DarmstadtDarmstadtGermany
  7. 7.Institut für Allgemeine, Anorganische und Theoretische ChemieUniversität InnsbruckInnsbruckAustria
  8. 8.Institut für Angewandte GeowissenschaftenTechnische Universität DarmstadtDarmstadtGermany
  9. 9.Areva GmbHErlangenGermany

Personalised recommendations