Advertisement

Physics and Chemistry of Minerals

, Volume 41, Issue 7, pp 555–567 | Cite as

Growth of ringwoodite reaction rims from MgSiO3 perovskite and periclase at 22.5 GPa and 1,800 °C

  • Akira ShimojukuEmail author
  • Asmaa Boujibar
  • Daisuke Yamazaki
  • Takashi Yoshino
  • Naotaka Tomioka
  • Junshan Xu
Original Paper

Abstract

The growth rate of ringwoodite reaction rims between MgSiO3 perovskite and periclase was investigated at 22.5 GPa and 1,800 °C for 1–24 h using the Kawai-type high-pressure apparatus. The reaction was likely to proceed by a diffusion-controlled mechanism in which the dominant diffusion mechanism was grain-boundary diffusion. The reaction constant (the width of the ringwoodite reaction rim squared divided by time) determined from these experiments was between 1.3 × 10−15 and 5.6 × 10−15 m2/s. A Pt inert marker experiment indicated that the MgO component migrated faster than the SiO2 component in ringwoodite. Thus, either Mg or O having the slower diffusion rate controlled the reaction. Because previous diffusion studies have shown that diffusion rates of O are slower than those of Mg, O would be a rate-controlling element for ringwoodite formation from MgSiO3 perovskite and periclase. The growth rate appeared to be too fast to explain the observed topographic rise (~10 km) inside mantle plumes at the 660-km discontinuity.

Keywords

Reaction rim Growth kinetics Diffusion Ringwoodite MgSiO3 perovskite Post-spinel transformation 

Notes

Acknowledgments

We thank E. Ito, A. Yoneda, T. Kubo, and G. Maruyama for valuable discussions regarding the manuscript, S. Yamashita and N. Chertkova for their technical assistance with the Raman spectrometer, and K. Komatsu for his technical assistance with the FTIR spectrometer. We also thank R. Milke and an anonymous reviewer for their constructive reviews that have helped us improve the manuscript significantly. This work was supported by Misasa International Student Intern Program 2010 at the Institute for Study of the Earth’s Interior, Okayama University. A. Shimojuku is a research fellow of the Japan Society for the Promotion of Science.

Referencess

  1. Abart R, Kunze K, Milke R, Sperb R, Heinrich W et al (2004) Silicon and oxygen self diffusion in enstatite polycrystals: the Milke et al. (2001) rim growth experiments revisited. Contrib Miner Petrol 147:633–646CrossRefGoogle Scholar
  2. Atkinson HV (1988) Theories of normal grain growth in pure single phase systems. Acta Metall 36:469–491CrossRefGoogle Scholar
  3. Bolfan-Casanova N, Keppler H, Rubie DC (2003) Water partitioning at 660 km depth and evidence for very low water solubility in magnesium silicate perovskite. Geophys Res Lett. doi: 10.1029/2003GL017182 Google Scholar
  4. Dohmen R, Milke R (2010) Diffusion in polycrystalline materials: grain boundaries, mathematical models, and experimental data. Rev Miner Geochem 72:921–970CrossRefGoogle Scholar
  5. Farber DL, Williams Q, Ryerson FJ (2000) Divalent cation diffusion in Mg2SiO4 spinel (ringwoodite), β; phase (wadsleyite), and olivine: implications for the electrical conductivity of the mantle. J Geophys Res 105:513–529CrossRefGoogle Scholar
  6. Fei Y, Van Orman J, Li J, van Westrenen W, Sanloup C, Minarik W, Hirose K, Komabayashi T, Walter M, Funakoshi K (2004) Experimentally determined postspinel transformation boundary in Mg2SiO4 using MgO as an internal pressure standard and its geophysical implications. J Geophys Res. doi: 10.1029/2003JB002562 Google Scholar
  7. Fiquet G, Andrault D, Dewaele A, Charpin T, Kunz M, Hausermann D (1998) P–V–T equation of state of MgSiO3 perovskite. Phys Earth Planet Int 105:21–31CrossRefGoogle Scholar
  8. Fisler DK, Mackwell SJ (1994) Kinetics of diffusion-controlled growth of fayalite. Phys Chem Miner 21:156–165CrossRefGoogle Scholar
  9. Fisler DK, Mackwell SJ, Petsch S (1997) Grain-boundary diffusion in enstatite. Phys Chem Miner 24:264–273CrossRefGoogle Scholar
  10. Frost RL, Kloprogge JT (1999) Infrared emission spectroscopic study of brucite. Spectrochim Acta A 55:2195–2205CrossRefGoogle Scholar
  11. Gardés E, Heinrich W (2011) Growth of multilayered polycrystalline reaction rims in the MgO–SiO2 system, part II: modelling. Contrib Miner Petrol 162:37–49CrossRefGoogle Scholar
  12. Gardés E, Wunder B, Wirth R, Heinrich W (2011) Growth of multilayered polycrystalline reaction rims in the MgO–SiO2 system, part I: experiments. Contrib Miner Petrol 161:1–12CrossRefGoogle Scholar
  13. Gérard O, Jaoul O (1989) Oxygen diffusion in San Carlos olivine. J Geophys Res 94:4119–4128CrossRefGoogle Scholar
  14. Hart EW (1957) On the role of dislocations in bulk diffusion. Acta Metall 5:597CrossRefGoogle Scholar
  15. Holzapfel C, Chakraborty S, Rubie DC, Frost DJ (2009) Fe–Mg interdiffusion in wadsleyite: the role of pressure, temperature and composition and the magnitude of jump in diffusion rates at 410 km discontinuity. Phys Earth Planet Int 172:28–33CrossRefGoogle Scholar
  16. Ito E, Takahashi E (1989) Post-spinel transformations in the system Mg2SiO4–Fe2SiO4 and some geophysical implications. J Geophys Res 94:10637–10646CrossRefGoogle Scholar
  17. Ito E, Weidner DJ (1986) Crystal growth of MgSiO3 perovskite. Geophys Res Lett 13:464–466CrossRefGoogle Scholar
  18. Ito E, Takahashi E, Matsui Y (1984) The mineralogy and chemistry of the lower mantle: an implication of the ultrahigh-pressure phase relations in the system MgO–FeO–SiO2. Earth Planet Sci Lett 67:238–248CrossRefGoogle Scholar
  19. Joachim B, Gardés E, Abart R, Heinrich W (2011) Experimental growth of åkermanite reaction rims between wollastonite and monticellite: evidence for volume diffusion control. Contrib Mineral Petrol 161:389–399CrossRefGoogle Scholar
  20. Katsura T, Yokoshi S, Song M, Kawabe K, Tsujimura T, Kubo A, Ito E, Tange Y, Tomioka N, Saito K, Nozawa A, Funakoshi K (2004a) Thermal expansion of Mg2SiO4 ringwoodite at high pressures. J Geophys Res. doi: 10.1029/2004JB003094 Google Scholar
  21. Katsura T, Yamada H, Nishikawa O, Song M, Kubo A, Shinmei T, Yokoshi S, Aizawa Y, Yoshino T, Walter MJ, Ito E (2004b) Olivine–wadsleyite transition in the system (Mg,Fe)2SiO4. J Geophys Res. doi: 10.1029/2003JB002438 Google Scholar
  22. Korenaga J (2005) Firm mantle plumes and the nature of the core-mantle boundary region. Earth Planet Sci Lett 232:29–37CrossRefGoogle Scholar
  23. Kubo T, Ohtani E, Funakoshi K (2004) Nucleation and growth kinetics of the α–β transformation in Mg2SiO4 determined by in situ synchrotron powder X-ray diffraction. Am Mineral 89:285–293Google Scholar
  24. Kubo T, Doi N, Kato T, Higo Y, Funakoshi K (2011) Kinetics of the post-spinel transformation and mantle flow across the 660-km discontinuity. American Geophysical Union, Fall meeting 2011, abstract no. DI21B-08Google Scholar
  25. Litasov K, Ohtani E, Sano A, Suzuki A, Funakoshi K (2005) In situ X-ray diffraction study of post-spinel transformation in a peridotite mantle: implication for the 660-km discontinuity. Earth Planet Sci Lett 238:311–328CrossRefGoogle Scholar
  26. Liu M, Peterson J, Yund RA (1997) Diffusion-controlled growth of albite and pyroxene reaction rims. Contrib Mineral Petrol 126:217–223CrossRefGoogle Scholar
  27. Matsui M (2001) Density and bulk sound velocity jumps across the 660 km seismic discontinuity. Phys Earth Planet Int 125:141–146CrossRefGoogle Scholar
  28. Milke R, Heinrich W (2002) Diffusion-controlled growth of wollastonite rims between quartz and calcite: comparison between nature and experiment. J Metamorph Geol 20:467–480CrossRefGoogle Scholar
  29. Milke R, Wirth R (2003) The formation of columnar fiber texture in wollastonite rims by induced stress and implications for diffusion-controlled corona growth. Phys Chem Miner 30:230–242CrossRefGoogle Scholar
  30. Milke R, Dohmen R, Becker HW, Wirth R (2007) Growth kinetics of enstatite reaction rims studied on nano-scale, part I: methodology, microscopic observations and the role of water. Contrib Mineral Petrol 154:519–533CrossRefGoogle Scholar
  31. Milke R, Abart R, Kunze K, Koch-Müller M, Schmid D, Ulmer P (2009) Matrix rheology effects on reaction rim growth I: evidence from orthopyroxene rim growth experiments. J Metamorph Geol 27:71–82CrossRefGoogle Scholar
  32. Milke R, Neusser G, Kolzer K, Wunder B (2013) Very little water is necessary to make a dry solid silicate system wet. Geology 41:247–250CrossRefGoogle Scholar
  33. Montelli R, Nolet G, Dahlen FA, Masters G, Engdahl ER, Hung S-H (2004) Finite-frequency tomography reveals a variety of plumes in the mantle. Science 303:338–343CrossRefGoogle Scholar
  34. Morishima H, Kato T, Suto M, Ohtani E, Urakawa S, Utumi W, Shimomura O, Kikegawa T (1994) The phase boundary between α- and β-Mg2SiO4 determined by in situ X-ray observation. Science 265:1202–1203CrossRefGoogle Scholar
  35. Niu F, Solomon SC, Silver PG, Suetsugu D, Inoue H (2002) Mantle transition-zone structure beneath the South Pacific superswell and evidence for a mantle plume underlying the Society hotspot. Earth Planet Sci Lett 198:371–380CrossRefGoogle Scholar
  36. Ono S, Katsura T, Ito E, Kanzaki M, Yoneda A, Walter MJ, Urakawa S, Utsumi W, Funakoshi K (2001) In situ observation of ilmenite-perovskite phase transition in MgSiO3 using synchrotron radiation. Geophys Res Lett 28:835–838CrossRefGoogle Scholar
  37. Rubie DC, Tsuchida Y, Yagi T, Utsumi W, Kikegawa T, Shimomura O, Brearley AJ (1990) An in situ X ray diffraction study of the kinetics of the Ni2SiO4 olivine-spinel transformation. J Geophys Res 95:15829–15844CrossRefGoogle Scholar
  38. Schmalzried H (1978) Reactivity and point defects of double oxides with emphasis on simple silicates. Phys Chem Miner 2:279–294CrossRefGoogle Scholar
  39. Shatskiy A, Fukui H, Matsuzaki T, Shinoda K, Yoneda A, Yamazaki D, Ito E, Katsura T (2007) Growth of large (1 mm) MgSiO3 perovskite single crystals: a thermal gradient method at ultrahigh pressure. Am Mineral 92:1744–1749CrossRefGoogle Scholar
  40. Shen Y, Solomon SC, Bjarnason IT, Wolfe CJ (1998) Seismic evidence for lower-mantle origin of the Iceland plume. Nature 395:62–65CrossRefGoogle Scholar
  41. Shimojuku A, Kubo T, Ohtani E, Nakamura T, Okazaki R, Dohmen R, Chakraborty S (2009) Si and O diffusion in (Mg,Fe)2SiO4 wadsleyite and ringwoodite and its implications for the rheology of the mantle transition zone. Earth Planet Sci Lett 284:103–112CrossRefGoogle Scholar
  42. Solomatov VS, El-Khozondar R, Tikare V (2002) Grain size in the lower mantle: constraints from numerical modeling of grain growth in two-phase systems. Phys Earth Planet Int 129:265–282CrossRefGoogle Scholar
  43. Tange Y, Nishihara Y, Tsuchiya T (2008) Unified analyses for P–V–T equation of state of MgO: a solution for pressure-scale problems in high P–T experiments. J Geophys. doi: 10.1029/2008JB005813 Google Scholar
  44. Verhoogen J (1965) Phase changes and convection in Earth’s mantle. Philos Trans R Soc Lond Ser A 258:276–283CrossRefGoogle Scholar
  45. Wang Y, Guyot F, Liebermann RC (1992) Electron microscopy of (Mg,Fe)SiO3 perovskite: evidence for structural phase transitions and implications for the lower mantle. J Geophys Res 97:12327–12347CrossRefGoogle Scholar
  46. White RS, McKenzie D (1995) Mantle plumes and flood basalts. J Geophys Res 100:17543–17585CrossRefGoogle Scholar
  47. Yamazaki D, Kato T, Yurimoto H, Ohtani E, Toriumi M (2000) Silicon self-diffusion in MgSiO3 perovskite at 25 GPa. Phys Earth Planet Int 119:299–309CrossRefGoogle Scholar
  48. Yund RA (1997) Rates of grain-boundary diffusion through enstatite and forsterite reaction rims. Contrib Miner Petrol 126:224–236CrossRefGoogle Scholar
  49. Zhao D (2001) Seismic structure and origin of hotspots and mantle plumes. Earth Planet Sci Lett 192:251–265CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Akira Shimojuku
    • 1
    • 2
    Email author
  • Asmaa Boujibar
    • 3
  • Daisuke Yamazaki
    • 1
  • Takashi Yoshino
    • 1
  • Naotaka Tomioka
    • 1
  • Junshan Xu
    • 1
    • 4
  1. 1.Institute for Study of the Earth’s InteriorOkayama UniversityMisasaJapan
  2. 2.Earthquake Research InstituteUniversity of TokyoTokyoJapan
  3. 3.Laboratoire Magmas et Volcans, Clermont UniversitéUniversité Blaise PascalClermont-FerrandFrance
  4. 4.Mengcheng National Geophysical Observatory, School of Earth and Space SciencesUniversity of Science and Technology of ChinaHefeiPeople’s Republic of China

Personalised recommendations