Physics and Chemistry of Minerals

, Volume 41, Issue 6, pp 393–401 | Cite as

Observations on the crystal structures of lueshite

  • Roger H. MitchellEmail author
  • Peter C. Burns
  • Kevin S. Knight
  • Christopher J. Howard
  • Anton R. Chakhmouradian
Original Paper


Laboratory powder XRD patterns of the perovskite-group mineral lueshite from the type locality (Lueshe, Kivu, DRC) and pure NaNbO3 demonstrate that lueshite does not adopt the same space group (Pbma; #57) as the synthetic compound. The crystal structures of lueshite (2 samples) from Lueshe, Mont Saint-Hilaire (Quebec, Canada) and Sallanlatvi (Kola, Russia) have been determined by single-crystal CCD X-ray diffraction. These room temperature X-ray data for all single-crystal samples can be satisfactorily refined in the orthorhombic space group Pbnm (#62). Cell dimensions, atomic coordinates of the atoms, bond lengths and octahedron tilt angles are given for four crystals. Conventional neutron diffraction patterns for Lueshe lueshite recorded over the temperature range 11–1,000 K confirm that lueshite does not adopt space group Pbma within these temperatures. Neutron diffraction indicates no phase changes on cooling from room temperature to 11 K. None of these neutron diffraction data give satisfactorily refinements but suggest that this is the space group Pbnm. Time-of-flight neutron diffraction patterns for Lueshe lueshite recorded from room temperature to 700 °C demonstrate phase transitions above 550 °C from Cmcm through P4/mbm to \(Pm\overline{3} m\) above 650 °C. Cell dimensions and atomic coordinates of the atoms are given for the three high-temperature phases. The room temperature to 400 °C structures cannot be satisfactorily resolved, and it is suggested that the lueshite at room temperature consists of domains of pinned metastable phases with orthorhombic and/or monoclinic structures. However, the sequence of high-temperature phase transitions observed is similar to those determined for synthetic NaTaO3, suggesting that the equilibrated room temperature structure of lueshite is orthorhombic Pbnm.


Lueshite Sodium niobate Crystal structure 



This work is supported by the Natural Sciences and Engineering Research Council of Canada, Lakehead University and Almaz Petrology. We thank Anatoly  Zaitsev and Andy McDonald for samples of lueshite from Sallanlatvi and Mont St. Hilaire, respectively, Prof J. Jedwab (Brussels) is thanked for supplying the crystal of synthetic NaNbO3 prepared by Elizabeth Wood (1951).


  1. Ahtee M, Hewat AW (1975) The structures of Na0.98K0.02NbO3 and Na0.90K0.10NbO3 (Phase Q) at room temperature by neutron powder diffraction. Acta Cryst A31:846–850CrossRefGoogle Scholar
  2. Anthony JW, Bideaux RA, Bladh KW, Nichols MC (1997) Handbook of Mineralogy. Volume III. Halides, Hydroxides, Oxides. Mineral Data Publishing, TucsonGoogle Scholar
  3. Blackburn WH, Dennan WH (1977) Encylopedia of mineral names. Can Mineral Spec Publ 1:179Google Scholar
  4. Bokov AA, Ye ZG (2001) Recent progress in relaxor ferroelectrics with perovskite structures. J Mat Sci 41:31–52CrossRefGoogle Scholar
  5. Chakhmouradian AR, Mitchell RH (1997) Compositional variation of perovskite-group minerals from the carbonatite complexes of the Kola alkaline province, Russia. Can Mineral 35:1293–1310Google Scholar
  6. Chakhmouradian AR, Mitchell RH (1998) Lueshite, pyrochlore and monazite-(Ce) from apatite-dolomite carbonatite, Lesnaya Varaka complex, Kola Peninsula, Russia. Mineral Mag 62:769–782CrossRefGoogle Scholar
  7. Chakhmouradian AR, Mitchell RH (2002) New data on pyrochlore- and perovskite-group minerals from the Lovozero alkaline complex, Russia. Eur J Mineral 14:821–836CrossRefGoogle Scholar
  8. Chakhmouradian AR, Mitchell RH, Pankov AV, Chukhanov NV (1999) Loparite and “metaloparite” from the Burpala alkaline complex, Baikal Alkaline Province (Russia). Mineral Mag 63:519–534CrossRefGoogle Scholar
  9. Chakhmouradian AR, Halden NM, Mitchell RH, Horvath L (2007) Rb–Cs-rich rasvumite and sector zoned “Loparite-(Ce)” from Mont Saint Hilaire (Quebec) and their petrologic significance. Eur J Mineral 19:533–543CrossRefGoogle Scholar
  10. Danø M, Sørenson H (1959) An examination of some rare minerals from the nepheline syenites of southwest Greenland. Medd om Grønland 162:1–35Google Scholar
  11. Darlington CNW, Knight KS (1999) High temperature phases of NaNbO3 and NaTaO3. Acta Cryst B55:24–30CrossRefGoogle Scholar
  12. Glazer AM (1972) The classification of tilted octahedra in perovskites. Acta Cryst B28:3384–3392CrossRefGoogle Scholar
  13. Hewat AW (1974) Neutron powder profile refinement of ferroelectric and antiferroelectric crystal strictures—sodium niobate at 22 °C. Ferroelectrics 7:83–85CrossRefGoogle Scholar
  14. Howard CJ, Stokes HT (1998) Group theoretical analysis of octahedral tilting in perovskites. Acta Crysta B54:782–789CrossRefGoogle Scholar
  15. Howard CJ, Stokes HT (2005) Structures and phase transitions in perovskites—a group theoretical approach. Acta Crysta A61:93–111CrossRefGoogle Scholar
  16. Howard CJ, Knight KS, Kennedy BJ, Kisi EH (2000) The structural phase transitions in strontium zirconate revisited. J Phys: Condens Matter 12:L1–L7Google Scholar
  17. Howard CJ, Withers RL, Kennedy BJ (2001) Space group and structure for the perovskite Ca0.5Sr0.5TiO3. J Solid State Chem 160:8–12CrossRefGoogle Scholar
  18. Ibers JA, Hamilton WC (1974) International tables for X-ray crystallography IV. The Kynoch Press, Birmingham UKGoogle Scholar
  19. Johnston KE, Tang CC, Parker JE, Knight KS, Lightfoot P, Ashbrook SE (2010) The polar phase of NaNbO3: a combined study by powder diffraction, solid state NMR, and first principles calculations. J Am Chem Soc 132:8732–8746CrossRefGoogle Scholar
  20. Kennedy BJ, Prodjosantoso AK, Howard CJ (1999) Powder neutron diffraction study of the high temperature phase transitions in NaTaO3. J Phys: Condens Matter 11:6319–6327Google Scholar
  21. Kern AA, Coelho AA (1998) TOPAS version 2.1: general profile and structure analysis software for powder diffraction data. Bruker AXS Karlsruhe p 79 Google Scholar
  22. Kummert P (1968) Propriétés optiques de la lueshite. Bull Soc Belge Geol 68:269–273Google Scholar
  23. Larsen AC, Von Dreele RB (2004) General structure analysis system (GSAS), Los Alamos National Laboratory ReportGoogle Scholar
  24. Maravic HV, Morteani G, Roethe G (1989) The cancrinite-syenite/carbonatite complex of Lueshe, Kivu, NE-Zaire: petrographic and geochemical studies and its economic significance. J Afr Earth Sci 9:341–355CrossRefGoogle Scholar
  25. Mishra SK, Mittal R, Pomjakushin VY, Chaplot SL (2011) Phase stability and structural temperature dependence in sodium niobate: a high resolution powder neutron diffraction study. Phys Rev B 83:134105–134113CrossRefGoogle Scholar
  26. Mitchell RH (1996) Perovskites: a revised classification for an important rare earth element host in alkaline rocks. In: Jones AP, Wall F, Williams CT (eds) Rare earth minerals: chemistry, origin and ore deposits. Chapman & Hall, London, pp 41–76Google Scholar
  27. Mitchell RH (2002) Perovskites: modern and ancient. Almaz Press, Thunder BayGoogle Scholar
  28. Mitchell RH, Chakhmouradian AR (1996) Compositional variation of loparite from the Lovozero alkaline complex, Russia. Can Mineral 34:977–990Google Scholar
  29. Mitchell RH, Burns PC, Chakhmouradian AR (2000) The crystal structures of loparite-(Ce). Can Mineral 38:144–152Google Scholar
  30. Mitchell RH, Burns PC, Chakhmouradian AR, Levin I (2002) The crystal structures of lueshite and NaNbO3.. Internat Mineral Assoc Mtg Edinburgh, Scotland, Abstract A9-5Google Scholar
  31. Nickel EH, McAdam RC (1963) Niobian perovskite from Oka, Quebec: a new classification for minerals of the perovskite group. Can Mineral 7:683–697Google Scholar
  32. Noheda B, Gonzalo JA, Cross LE, Park SE, Cox DE, Shirane G (2000) Tetragonal to monoclinic phase transition in a ferroelectric perovskite: the structure of PbZr0.52Ti0.48O3. Phys Rev B61:8687–8695CrossRefGoogle Scholar
  33. Peel MD, Thompson SP, Daud-Aladine A, Ashbrook SE, Lightfoot P (2012) New twists on the perovskite theme: crystal structures of the elusive phases R and S of NaNbO3. Inorg Chem 51:6876–6889CrossRefGoogle Scholar
  34. Ranjan R, Pandey D, Siuguri V, Kirshna PSR, Paranjipe SK (1999) Novel structural features and phase transition behaviour of (Sr1-xCax)TiO3: I Neutron diffraction study. J Phys: Condens Matter 11:2233–2246Google Scholar
  35. Safianikoff A (1959) Un nouveau minéral de niobium. Bull Acad Roy Sci Outre-mer 6:1251–1255Google Scholar
  36. Sakowski-Crowley AC, Lukaszewicz K, Megaw HD (1969) The structure of sodium niobate at room temperature, and the problem of the reliability in pseudo-symmetric structures. Acta Cryst 25:851–856CrossRefGoogle Scholar
  37. Sasaki S, Prewitt CT, Bass JD (1987) Orthorhombic perovskite CaTiO3 and CdTiO3 Structure and space group. Acta Cryst C43:1668–1674Google Scholar
  38. Sciau P, Kania A, Dkhil B, Suard E Ratuszna (2004) Structural investigation of AgNbO3 using X-ray and neutron diffraction. J Phys: Condens Matter 16:2795–2810Google Scholar
  39. Shan YJ, Nakamura T, Inaguma Y, Itoh M (1998) Preparation and dielectric characterization of the novel perovskite-type oxides (Ln½Na½)TiO3 (Ln = Dy, Ho, Er, Tm, Yb, Lu). Solid State Ionics 108:123–128CrossRefGoogle Scholar
  40. Sun PH, Nakamura T, Shan YJ, Inaguma Y, Itoh M (1997) High temperature quantum para-electricity in perovskite type titanates Ln ½Na½TiO3 (Ln = La, Pr, Nd, Sm, Eu, Gd, and Tb). Ferroelectrics 200:93–107CrossRefGoogle Scholar
  41. Toby BH (2001) EXPGUI, a graphical user interface for GSAS. J Appl Cryst 34:210–213CrossRefGoogle Scholar
  42. Vousden P (1951) The structure of the ferroelectric sodium niobate at room temperature. Acta Cryst 4:545–551CrossRefGoogle Scholar
  43. Wood EA (1951) Polymorphism in potassium niobate, sodium niobate and other ABO3 compounds. Acta Cryst 4:353–362CrossRefGoogle Scholar
  44. Woodward PM (1997) Structural distortions, phase transitions and cation ordering in the perovskite and tungsten trioxide structures. PhD. Thesis Oregon Sate UniversityGoogle Scholar
  45. Zhao Y, Weidner DJ, Parise JB, Cox DE (1993) Critical phenomena and phase transitions of perovskite—data for NaMgF3 Part II. Phys Earth Planet Interiors 76:17–34CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Roger H. Mitchell
    • 1
    Email author
  • Peter C. Burns
    • 2
  • Kevin S. Knight
    • 3
  • Christopher J. Howard
    • 4
  • Anton R. Chakhmouradian
    • 5
  1. 1.Department of GeologyLakehead UniversityThunder BayCanada
  2. 2.Department of Civil Engineering and Geological SciencesUniversity of Notre DameNotre DameUSA
  3. 3.Rutherford Appleton LaboratoryChilton, DidcotUK
  4. 4.School of EngineeringUniversity of NewcastleNewcastleAustralia
  5. 5.Department of Geological SciencesUniversity of ManitobaWinnipegCanada

Personalised recommendations