Advertisement

Physics and Chemistry of Minerals

, Volume 41, Issue 6, pp 439–447 | Cite as

Pressure-induced amorphization of A-site-deficient double perovskite Ln1/3MO3 (Ln = Pr, Nd, M = Nb, Ta)

  • O. Noked
  • A. Melchior
  • R. Shuker
  • R. Steininger
  • B. J. Kennedy
  • E. Sterer
Original Paper

Abstract

High-pressure X-ray diffraction measurements have demonstrated that the cation-deficient perovskites Pr1/3NbO3, Pr1/3TaO3, Nd1/3NbO3, and Nd1/3TaO3 undergo irreversible pressure-induced amorphization (PIA). This occurs near 14.5 GPa for the niobates and 18.5 GPa for the tantalates. The unit cell volumes of the four oxides show an almost linear decrease as the pressure is increased. It is concluded that the PIA transition occurs at higher pressures in the tantalates due to the lower MO6 initial tilting at ambient conditions, which is associated with the larger atomic mass of the tantalum. The behavior of these oxides is compared to that of CaTiO3, and the role of both the weakening of the M–O–M π-bonding and the cation vacancies on the observed structural changes is discussed.

Keywords

Perovskite High pressure Pressure-induced amorphization 

Notes

Acknowledgments

The authors acknowledge ANKA for granting beamtime at SUL-X. The research at ANKA received funding from the European Community’s Seventh Framework Programme under Grant Agreement No 226716 (ELISA) for proposal CM 68. This work was partially supported by the Australian Research Council.

References

  1. Blasse G (1964) Qualitative approach to the structural differences between some mixed metal oxides containing Sb5+, Nb5+ and Ta5+. J lnorg Nucl Chem 26:1191–1199. doi: 10.1016/0022-1902(64)80199-8 CrossRefGoogle Scholar
  2. Bouvier P, Crichton WA, Boulova M, Lucazeau G (2002) X-ray diffraction study of WO3 at high pressure. J Phys Condens Matter 14:6605. doi: 10.1088/0953-8984/14/26/301 CrossRefGoogle Scholar
  3. Brese NE, O’Keefe M (1991) Bond-valence parameters for solids. Acta Crystallogr B47:192–197. doi: 10.1107/S0108768190011041 CrossRefGoogle Scholar
  4. D’yachenko OG, Istomin SY, Abakumov AM, Antipov EV (2000) Synthesis, structure, and properties of mixed niobium (IV, V) oxides. Inorg Mater 36:247–259. doi: 10.1007/BF02757930 CrossRefGoogle Scholar
  5. Galasso FS (1969) Structure, properties and preparation of perovskite-type compounds. Pergamon, OxfordGoogle Scholar
  6. Guennou M, Bouvier P, Krikler B, Kreisel J, Haumont R, Garbarino G (2010) High-pressure investigation of CaTiO3 up to 60 GPa using x-ray diffraction and Raman spectroscopy. Phys Rev B 82:134101. doi: 10.1103/PhysRevB.82.134101 CrossRefGoogle Scholar
  7. Guyot F, Reynard B (1992) Pressure-induced structural modifications and amorphization in olivine compounds. Chem Geol 96:411–420. doi: 10.1016/0009-2541(92)90069-H CrossRefGoogle Scholar
  8. Hammersley AP, Svensson SO, Hanfland M, Fitch AN, Hausermann D (1996) Two-dimensional detector software: from real detector to idealised mage or two-theta scan. High Press Res 14:235–248. doi: 10.1080/08957959608201408 CrossRefGoogle Scholar
  9. Hemley RJ, Jephcoat AP, Mao HK, Ming LC, Manghnani MH (1988) Pressure-induced amorphization of crystalline silica. Nature 334:52–54. doi: 10.1038/334052a0 CrossRefGoogle Scholar
  10. Howard CJ, Zhang Z (2003) Structures and phase transition in the layered perovskite La0.6Sr0.1TiO3: a new orthorhombic structure solved from high-resolution diffraction in combination with group theoretical analysis. J Phys Condens Matter 15:4543. doi: 10.1088/0953-8984/15/26/304 CrossRefGoogle Scholar
  11. Howard CJ, Zhang Z (2004) Structure for perovskites with layered ordering of A-site cations. Acta Cryst B60:249–251. doi: 10.1107/S0108768104003714 CrossRefGoogle Scholar
  12. Kennedy BJ, Vogt T, Martin CD, Parise JB, Hriljac JA (2002) Pressure-induced phase transition in PrAlO3. Chem Mater 14:2644–2648. doi: 10.1021/cm0116976 CrossRefGoogle Scholar
  13. Kennedy BJ, Howard CJ, Kubota Y, Kato K (2004) Phase transition behaviour in the A-site deficient perovskite oxide La1/3NbO3. J Solid State Chem 177:4552–4556. doi: 10.1016/j.jssc.2004.08.047 CrossRefGoogle Scholar
  14. Mishima O (1996) Relationship between melting and amorphization of ice. Nature 384:546–549. doi: 10.1038/384546a0 CrossRefGoogle Scholar
  15. Mitchell RH (2002) Perovskites: modern and ancient. Almaz Press, Thunder BayGoogle Scholar
  16. Mizoguchi H, Woodward PM, Byeon SH, Parise JB (2004) Polymorphism in NaSbO3: structure and bonding in metal oxides. J Am Chem Soc 126:3175–3184. doi: 10.1021/ja038365h CrossRefGoogle Scholar
  17. Mukherjee G, Vijaykumar V, Karandikar A, Godwal B, Achary S, Tyagi A, Lausi A, Busetto E (2005) Compressibility anomaly and amorphization in the anisotropic negative thermal expansion material NbOPO4 under pressure. J Solid State Chem 178:8–14. doi: 10.1016/j.jssc.2004.09.011 CrossRefGoogle Scholar
  18. Mumme WG, Grey IE, Roth RS, Vanderah TA (2007) Contrasting oxide crystal chemistry of Nb and Ta: the structures of the hexagonal bronzes BaTa2O6 and Ba0.93Nb2.03O6. J Solid State Chem 180:2429–2436. doi: 10.1016/j.jssc.2007.06.014 CrossRefGoogle Scholar
  19. Murakami M, Hirose K, Kawamura K, Sata N, Ohishi Y (2004) Post-perovskite phase transition in MgSiO3. Science 304:855–858. doi: 10.1126/science.1095932 CrossRefGoogle Scholar
  20. Navrotsky A, Weidner DJ (1989) Perovskite: a structure of great interest to geophysics and material science. Geophysical Monograph Series, vol 45. AGU, Washington, DC, p 146Google Scholar
  21. Noked O, Yakovlev S, Greenberg Y, Garbarino G, Shuker R, Avdeev M, Sterer E (2011) Pressure-induced amorphization of La1/3NbO3. J Non-Cryst Solids 357:3334–3337. doi: 10.1016/j.jnoncrysol.2011.05.030 CrossRefGoogle Scholar
  22. Noked O, Melchior A, Shuker R, Livneh T, Steininger R, Kennedy BJ, Sterer E (2013) Pressure-induced amorphization of La1/3TaO3. J Solid State Chem 202:38–42. doi: 10.1016/j.jssc.2013.03.007 CrossRefGoogle Scholar
  23. Ono S, Oganov AR (2005) In situ observations of phase transition between perovskite and CaIrO3-type phase in MgSiO3 and pyrolitic mantle composition. Earth Planet Sci Lett 236:914–932. doi: 10.1016/j.epsl.2005.06.001 CrossRefGoogle Scholar
  24. Rao CNR, Raveau B (1998) Transition metal oxides, 2nd edn. VCH, New YorkGoogle Scholar
  25. Rodríguez-Carvajal J (1993) Recent advances in magnetic structure determination by neutron powder diffraction. Phys B 192:55–69. doi: 10.1016/0921-4526(93)90108-I CrossRefGoogle Scholar
  26. Salak AN, Vyshatko NP, Khalyavin DD, Prokhnenko O, Ferreira VM (2008) Low-temperature structural and dielectric phenomena in La1/3NbO3 and La1/3TaO3: comparative study. Appl Phys Lett AIP 93:162903. doi: 10.1063/1.3006331 CrossRefGoogle Scholar
  27. Shim SH, Duffy TS, Takemura K (2002) Equation of state of gold and its application to the phase boundaries near 660 km depth in Earth’s mantle. Earth Planet Sci Lett 203:729–739. doi: 10.1016/S0012-821X(02)00917-2 CrossRefGoogle Scholar
  28. Sikka SK (2004) Negative thermal expansion and its relation to high pressures. J Phys Condens Matter 16:1033. doi: 10.1088/0953-8984/16/14/013 CrossRefGoogle Scholar
  29. Smith KL, Lumpkin GR, Blackford MG, Colella M, Zaluzec NJ (2008) In situ radiation damage studies of LaxSr1−3x/2TiO3 perovskites. J Appl Phys 103:083531. doi: 10.1063/1.2901183 CrossRefGoogle Scholar
  30. Sterer E, Pasternak MP, Taylor RD (1990) A multipurpose miniature diamond anvil cell. Rev Sci Instrum 61:1117. doi: 10.1063/1.1141433 CrossRefGoogle Scholar
  31. Stramare S, Thangadurai V, Weppner W (2003) Lithium lanthanum titanates: a review. Chem Mater 15:3974–3990. doi: 10.1021/cm0300516 CrossRefGoogle Scholar
  32. Suzuki E, Kobayashi Y, Endo S, Kikegawa T (2002) Structural phase transition in ReO3 under high pressure. J Phys Condens Matter 14:10589. doi: 10.1088/0953-8984/14/44/338 CrossRefGoogle Scholar
  33. Tejuco LG, Fierro JLG (1993) Properties and applications of perovskite-type oxides. Marcel Dekker, New York, NYGoogle Scholar
  34. Trzesowska A, Kruszynski R, Tadeusz J, Bartczak J (2004) New bond-valence parameters for lanthanides. Acta Cryst B60:174–178. doi: 10.1107/S0108768104002678 CrossRefGoogle Scholar
  35. Vinet P, Rose JH, Ferrante J, Smith JR (1989) Universal features of the equation of state of solids. J Phys Condens Matter 1:1941. doi: 10.1088/0953-8984/1/11/002 CrossRefGoogle Scholar
  36. Wallwork KS, Kennedy BJ, Zhou Q, Lee Y, Vogt T (2005) Pressure and temperature-dependent structural studies of Ba2BiTaO6. J Solid State Chem 178:207–211. doi: 10.1016/j.jssc.2004.11.012 CrossRefGoogle Scholar
  37. Williams Q, Knittle E, Reichlin R, Martin S, Jeanloz R (1990) Structural and electronic properties of Fe2SiO4-fayalite at ultrahigh pressures: amorphization and gap closure. J Geophys Res Solid Earth 95:21549–21563. doi: 10.1029/JB095iB13p21549 CrossRefGoogle Scholar
  38. Woodward PM (1997) Octahedral tilting in perovskites. II. Structure stabilizing forces. Acta Cryst B53:44–66. doi: 10.1107/S0108768196012050 CrossRefGoogle Scholar
  39. Zhanga Z, Howard CJ, Kennedy BJ, Knight KS, Zhou Q (2007) Crystal structure of Ln1/3NbO3 (Ln = Nd, Pr) and phase transition in Nd1/3NbO3. J Solid State Chem 180:1846–1851. doi: 10.1016/j.jssc.2007.03.029 CrossRefGoogle Scholar
  40. Zhao J, Ross NL, Angel RJ (2004) New view of the high-pressure behaviour of GdFeO3-type perovskites. Acta Cryst B60:263–271. doi: 10.1107/S0108768104004276 CrossRefGoogle Scholar
  41. Zhou Q, Saines PJ, Sharma N, Ting J, Kennedy BJ, Zhang Z, Withers RL, Wallwork KS (2008) Crystal structures and phase transitions in A-site deficient perovskites Ln1/3TaO3. Chem Mater 20:6666–6676. doi: 10.1021/cm8014868 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • O. Noked
    • 1
    • 2
  • A. Melchior
    • 1
  • R. Shuker
    • 2
  • R. Steininger
    • 3
  • B. J. Kennedy
    • 4
  • E. Sterer
    • 1
    • 5
  1. 1.Physics DepartmentNuclear Research Centre, NegevBeer ShevaIsrael
  2. 2.Physics DepartmentBen-Gurion UniversityBeer ShevaIsrael
  3. 3.Institute for Synchrotron RadiationKarlsruhe Institute of TechnologyKarlsruheGermany
  4. 4.School of ChemistryThe University of SydneySydneyAustralia
  5. 5.Physics DepartmentHarvard UniversityCambridgeUSA

Personalised recommendations