Advertisement

Physics and Chemistry of Minerals

, Volume 41, Issue 6, pp 431–437 | Cite as

Formation of a solid solution in the MgSiO3–MnSiO3 perovskite system

  • Lin LiEmail author
  • Takaya Nagai
  • Tomoki Ishido
  • Satoko Motai
  • Kiyoshi Fujino
  • Shoichi Itoh
Original Paper

Abstract

Experiments using laser-heated diamond anvil cells combined with synchrotron X-ray diffraction and SEM–EDS chemical analyses have confirmed the existence of a complete solid solution in the MgSiO3–MnSiO3 perovskite system at high pressure and high temperature. The (Mg, Mn)SiO3 perovskite produced is orthorhombic, and a linear relationship between the unit cell parameters of this perovskite and the proportion of MnSiO3 components incorporated seems to obey Vegard’s rule at about 50 GPa. The orthorhombic distortion, judged from the axial ratios of a/b and \( \sqrt{2}\,a/c, \)monotonically decreases from MgSiO3 to MnSiO3 perovskite at about 50 GPa. The orthorhombic distortion in (Mg0.5, Mn0.5)SiO3 perovskite is almost unchanged with increasing pressure from 30 to 50 GPa. On the other hand, that distortion in (Mg0.9, Mn0.1)SiO3 perovskite increases with pressure. (Mg, Mn)SiO3 perovskite incorporating less than 10 mol% of MnSiO3 component is quenchable. A value of the bulk modulus of 256(2) GPa with a fixed first pressure derivative of four is obtained for (Mg0.9, Mn0.1)SiO3. MnSiO3 is the first chemical component confirmed to form a complete solid solution with MgSiO3 perovskite at the PT conditions present in the lower mantle.

Keywords

Solid solution MgSiO3 perovskite MnSiO3 perovskite High pressure High temperature 

Notes

Acknowledgments

We thank N. Sata, Y. Ohishi, T. Kikegawa, Y. Seto, and D. Hamane for their technical supports with the X-ray diffraction experiments. We also thank Prof. Akaogi and an anonymous reviewer for helpful comments and constructive criticism. Synchrotron X-ray diffraction experiments were performed at SPring8 (proposal no. 2005A0049-ND2b-np) and at the Photon Factory (proposal no. 2008G012, 2010G060, 2012G050). T. Nagai is partly supported by JSPS KAKENHI Grant Number 18340167 and MEXT KAKENHI Grant Number 20103002. S. Itoh is partly supported by MEXT KAKEHI Grand Number 20002002 and 22224010.

References

  1. Anderson OL, Isaak DG, Yamamoto S (1989) An harmonicity and the equation state for gold. J Appl Phys 65:1534–1543CrossRefGoogle Scholar
  2. Andrault D (2003) Cationic substitution in MgSiO3 perovskite. Phys Earth Planet Inter 136:67–68CrossRefGoogle Scholar
  3. Birch F (1978) Finite strain isotherm and velocities for single-crystal and polycrystalline NaCl at high pressure and 300 K. J Geophys Res 83:1257–1268CrossRefGoogle Scholar
  4. Boffa Ballaran T, Kurnosov A, Glazrn K, Frost DJ, Merlini M, Hanfland M, Caracas R (2012) Effect of chemistry on the compressibility of silicate perovskite in the lower mantle. Earth Planet Sci Lett 333–334:181–190CrossRefGoogle Scholar
  5. Burns RG (1993) Mineralogical applications of crystal field theory. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  6. Fei Y, Wang Y, Finger LW (1996) Maximum solubility of FeO in (Mg, Fe)SiO3-perovskite as a function of temperature at 26 GPa: implication for FeO content in the lower mantle. J Geophys Res 101:11525–11530CrossRefGoogle Scholar
  7. Fiquet G, Andrault D, Dewaele A, Charpin T, Kunz M, Haüsermann D (1998) P–V–T equation of state of MgSiO3 perovskite. Phys Earth Planet Inter 105:21–31CrossRefGoogle Scholar
  8. Fujino K, Suzuki K, Hamane D, Seto Y, Nagai T, Sata N (2008) High-pressure phase relation of MnSiO3 up to 85 GPa: existence of MnSiO3 perovskite. Am Mineral 93:653–657CrossRefGoogle Scholar
  9. Fujino K, NIshio-Hamane D, Suzuki K, Izumi H, Seto Y, Nagai T (2009) Stability of the perovskite structure and possibility of the transition to the post-perovskite structure in CaSiO3, FeSiO3, MnSiO3 and CoSiO3. Phys Earth Planet Inter 177:14–151Google Scholar
  10. Horiuchi H, Ito E, Weidner DJ (1987) Perovskite-type MgSiO3: single-crystal X-ray diffraction study. Am Mineral 72:357–360Google Scholar
  11. Ito J (1972) Rhodonite-pyroxmangite peritectic along the join MnSiO3–MgSiO3 in air. Am Mineral 57:865–876Google Scholar
  12. Ito E, Matsui Y (1978) Synthesis and crystal-chemical characterization of MgSiO3 perovskite. Earth Planet Sci Lett 38:443–450CrossRefGoogle Scholar
  13. Jung DY, Schmidt MW (2011) Solid solution behavior of CaSiO3 and MgSiO3 perovskites. Phys Chem Minerals 38:311–319CrossRefGoogle Scholar
  14. Kesson SE, Fitz Gerald JD (1991) Partitioning of MgO, FeO, NiO, MnO and Cr2O3 between magnesian silicate perovskite and magnesiowüstite: implications for the origin of inclusions in diamond and the composition of the lower mantle. Earth Planet Sci Lett 111:229–240CrossRefGoogle Scholar
  15. Kesson SE, Fitz Gerald JD, Shelley JMG, Withers RL (2005) Phase relations, structure and crystal chemistry of some aluminous silicate perovskites. Earth Planet Sci Lett 134:187–201CrossRefGoogle Scholar
  16. Malavergme V, Guyot F, Wang Y, Martinez I (1997) Partitioning of nickel, cobalt and manganese between silicate perovskite and periclase: a test of crystal field theory at high pressure. Earth Planet Sci Lett 146:499–509CrossRefGoogle Scholar
  17. Ohtani E, Kato T, Ito E (1991) Transition metal partitioning between lower mantle and core materials at 27 GPa. Geophys Res Lett 18:85–88CrossRefGoogle Scholar
  18. Seto Y, Hamane D, Nagai T, Sata N (2010) Development of a software suite on X-ray diffraction experiments. Rev High Press Sci Technol 20:269–276 (in Japanese)CrossRefGoogle Scholar
  19. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A32:751–767CrossRefGoogle Scholar
  20. Tateno S, Hirose K, Sata N, Ohishi Y (2007) Solubility of FeO in (Mg, Fe)SiO3 perovskite and the post-perovskite phase transition. Phys Earth Planet Inter 160:319–325CrossRefGoogle Scholar
  21. Vanpeteghem CB, Zhao J, Angel RJ, Ross NL, Bolfan-Casanova N (2006) Crystal structure and equation of state of MgSiO3 perovskite. Geophys Res Lett 33:L03306CrossRefGoogle Scholar
  22. Watanuki T, Shimomura O, Yagi T, Kondo T, Isshiki M (2001) Construction of laser-heated diamond anvil cell system for in situ X-ray diffraction study at SPring-8. Rev Sci Instrum 72:1289–1292CrossRefGoogle Scholar
  23. Yagi T, Mao HK, Bell PM (1978) Structure and crystal chemistry of perovskite-type MgSiO3. Phys Chem Minerals 3:97–110CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Lin Li
    • 1
    Email author
  • Takaya Nagai
    • 2
  • Tomoki Ishido
    • 1
  • Satoko Motai
    • 1
  • Kiyoshi Fujino
    • 3
  • Shoichi Itoh
    • 2
  1. 1.Department of Natural History Sciences, Graduate School of ScienceHokkaido UniversitySapporoJapan
  2. 2.Department of Natural History Sciences, Faculty of ScienceHokkaido UniversitySapporoJapan
  3. 3.Geodynamics Research CenterEhime UniversityMatsuyamaJapan

Personalised recommendations