Physics and Chemistry of Minerals

, Volume 40, Issue 9, pp 705–716 | Cite as

Three cubic phases intergrown in a birefringent andradite-grossular garnet and their implications

Original paper

Abstract

The crystal chemistry across the garnet series is examined, and several systematic trends are reported. The crystal structure of three different cubic phases intergrown in a birefringent near end-member andradite from Namibia was refined by the Rietveld method, space group \( Ia\bar{3}d, \) and monochromatic synchrotron high-resolution powder X-ray diffraction data. Electron microprobe results indicate three phases with distinct compositions. The sample is birefringent, indicating that it is not cubic when observed optically. The reduced χ2 and overall R (F2) Rietveld refinement values are 1.655 and 0.0284, respectively, so the multi-phase refinement is excellent. The composition, weight %, unit-cell parameter (Å), distances (Å), and site-occupancy factors (sofs) are as follows: phase-1, Adr99, 88.5(1)  %, a = 12.06259(1), average 〈Ca–O〉 = 2.4310, Fe–O = 2.0189(4), Si–O = 1.6490(4) Å, Ca(sof) = 0.948(1), Fe(sof) = 0.934(1), and Si(sof) = 0.940(1). For phase-2: Adr71Grs28, 7.1(1) %, a = 12.00361(5), average 〈Ca–O〉 = 2.440, Fe–O = 1.979(3), Si–O = 1.641(3) Å, Ca(sof) = 0.913(5), Fe(sof) = 0.767(4), and Si(sof) = 0.932(5). For phase-3: Grs79Adr17, 4.4(1) %, a = 11.89719(4), average 〈Ca–O〉 = 2.404, Al–O = 1.935(4), Si–O = 1.667(3) Å, Ca(sof) = 0.944(6), Al(sof) = 1.069(7), and Si(sof) = 0.887(5). The dominant phase-1 (89 %; Adr99) is nearly end-member andradite, Ca3Fe23+Si3O12, which contains no cation order in the Ca(X) or Fe(Y) sites. The intergrowth of the three cubic phases causes considerable strain in the minor phases-2 and phases-3 that arise from different structural parameters and gives rise to strain-induced birefringence. For comparison, the results for an isotropic, single-phase, grossular–andradite garnet (Grs76Adr21) are also presented. The strain in the minor phases is about 3–5 times more than the unstrained dominant phase-1, or the unstrained single-phase grossular–andradite.

Keywords

Andradite Grossular Birefringence Three-phase intergrowth Rietveld refinements Synchrotron high-resolution powder X-ray diffraction (HRPXRD) Crystal structure 

References

  1. Adamo I, Gatta GD, Rotitoti N, Diella V, Pavese A (2010) Green andradite stones: gemological and mineralogical characterisation. Eur J Mineral 23:91–100CrossRefGoogle Scholar
  2. Agrosì G, Schingaro E, Pedrazzi G, Scandale E, Scordari R (2002) A crystal chemical insight into sector zoning of a titanian andradite (‘melanite’) crystal. Eur J Mineral 14:785–794CrossRefGoogle Scholar
  3. Akizuki M (1984) Origin of optical variations in grossular-andradite garnet. Am Mineral 66:403–409Google Scholar
  4. Akizuki M (1989) Growth structure and crystal symmetry of grossular garnets from the Jeffrey mine, Asbestos, Quebec, Canada. Am Mineral 74:859–864Google Scholar
  5. Allen FM, Buseck PR (1988) XRD, FTIR, and TEM studies of optically anisotropic grossular garnets. Am Mineral 73:568–584Google Scholar
  6. Angel R, Finger LW, Hazen RM, Kanzaki M, Weidner DJ, Liebermann RC, Veblen DR (1989) Structure and twinning of single-crystal MgSiO3 garnet synthesized at 17 GPa and 1800 °C. Am Mineral 74:509–512Google Scholar
  7. Antao SM (2013) The mystery of birefringent garnet: is the symmetry lower than cubic? Powder Diffr. doi:10.1017/S0885715613000523
  8. Antao SM, Hassan I (2010) A two-phase intergrowth of genthelvite from Mont Saint-Hilaire, Quebec. Can Mineral 48:1217–1223CrossRefGoogle Scholar
  9. Antao SM, Klincker AM (2013) Origin of birefringence in andradite from Arizona, Madagascar, and Iran. Phys Chem Minerals 40:575–586Google Scholar
  10. Antao SM, Hassan I, Wang J, Lee PL, Toby BH (2008) State-of-the-art high-resolution powder X-ray diffraction (HRPXRD) illustrated with Rietveld structure refinement of quartz, sodalite, tremolite, and meionite. Can Mineral 46:1501–1509CrossRefGoogle Scholar
  11. Antao SM, Klincker AM, Round SA (2013a) Some garnets are cubic and birefringent, why?. American Crystallographic Association, New YorkGoogle Scholar
  12. Antao SM, Klincker AM, Round SA (2013b) Origin of birefringence in common silicate garnet: intergrowth of different cubic phases. American Geophysical Union, WashingtonGoogle Scholar
  13. Armbruster T (1995) Structure refinement of hydrous andradite, Ca3Fe1.54Mn0.02Al0.26(SiO4)1.65(O4H4)1.35, from the Wessels mine, Kalahari manganese field, South Africa. Eur J Mineral 7:1221–1225Google Scholar
  14. Armbruster T, Geiger CA (1993) Andradite crystal chemistry, dynamic x-site disorder and structural strain in silicate garnets. Eur J Mineral 5:59–71Google Scholar
  15. Armbruster T, Lager GA (1989) Oxygen disorder and the hydrogen position in garnet-hydrogarnet solid-solutions. Eur J Mineral 1:363–369Google Scholar
  16. Armbruster T, Geiger CA, Lager GA (1992) Single crystal X-ray structure study of synthetic pyrope-almandine garnets at 100 and 293 K. Am Mineral 77:518–527Google Scholar
  17. Armbruster T, Birrer J, Libowitzky E, Beran A (1998) Crystal chemistry of Ti-bearing andradites. Eur J Mineral 10:907–921Google Scholar
  18. Badar MA, Akizuki M, Hussain S (2010) Optical anomaly in iridescent andradite from the Sierra Madre mountains, Sonora, Mexico. Can Mineral 48:1195–1203CrossRefGoogle Scholar
  19. Badar MA, Niaz S, Hussain S, Akizuki M (2013) Lamellar texture and optical anomaly in andradite from the Kamaishi mine, Japan. Eur J Mineral 25:53–60CrossRefGoogle Scholar
  20. Baerlocher C, Hepp A, Meier WM (1978) DLS-76: a program for the simulation of crystal structures by geometric refinement. Institute of Crystallography and Petrography—ETH, Zurich, p 116Google Scholar
  21. Baikie T, Schreyer MK, Wong CL, Pramana SS, Klooster WT, Ferraris C, McIntyre GJ, White TJ (2012) A multi-domain gem-grade Brazilian apatite. Am Mineral 97:1574–1581CrossRefGoogle Scholar
  22. Basso R, Dellagiusta A, Zefiro L (1981) A crystal chemical study of a Ti-containing hydrogarnet. Neues Jahrbuch Fur Mineralogie-Monatshefte 5:230–236Google Scholar
  23. Basso R, Dellagiusta A, Zefiro L (1983) Crystal-structure refinement of plazolite—a highly hydrated hatural hydrogrossular. Neues Jahrbuch Fur Mineralogie-Monatshefte 6:251–258Google Scholar
  24. Basso R, Cimmino F, Messiga B (1984a) Crystal chemical and petrological study of hydrogarnets from a Fe-gabbro metarodingite (Gruppo Di Voltri, Western Liguria, Italy). Neues Jahrbuch Fur Mineralogie-Abhandlungen 150:247–258Google Scholar
  25. Basso R, Cimmino F, Messiga B (1984b) Crystal-chemistry of hydrogarnets from three different microstructural sites of a basaltic metarodingite from the Voltri-Massif (Western Liguria, Italy). Neues Jahrbuch Fur Mineralogie-Abhandlungen 148:246–258Google Scholar
  26. Brauns R (1891) Die optischen Anomalien der Kristalle. Preisschr. Jablonowski Ges, LeipzigGoogle Scholar
  27. Chakhmouradian AR, McCammon CA (2005) Schorlomite: a discussion of the crystal chemistry, formula, and inter-species boundaries. Phys Chem Miner 32:277–289CrossRefGoogle Scholar
  28. Deer WA, Howie RA, Zussman J (1992) An introduction to the rock-forming minerals, 2nd edn. Wiley, New YorkGoogle Scholar
  29. Droop GTR (1987) A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria. Mineral Mag 51:431–435CrossRefGoogle Scholar
  30. Ferro O, Galli E, Papp G, Quartieri S, Szakall S, Vezzalini G (2003) A new occurrence of katoite and re-examination of the hydrogrossular group. Eur J Mineral 15:419–426CrossRefGoogle Scholar
  31. Frank-Kamenetskaya OV, Rozhdestvenskaya LV, Shtukenberg AG, Bannova II, Skalkina YA (2007) Dissymmetrization of crystal structures of grossular-andradite garnets Ca3(Al, Fe)2(SiO4)3. Struct Chem 18:493–503CrossRefGoogle Scholar
  32. Geiger CA, Armbruster T (1997) Mn3Al2Si3O12 spessartine and Ca3Al2Si3O12 grossular garnet: structural dynamic and thermodynamic properties. Am Mineral 82:740–747Google Scholar
  33. Geiger CA, Armbruster T, Lager GA, Jiang K, Lottermoser W, Amthauer G (1992) A combined temperature dependent 57Fe Mössbauer and single crystal X-ray diffraction study of synthetic almandine: evidence for the Gol’danskii-Karyagin effect. Phys Chem Miner 19:121–126CrossRefGoogle Scholar
  34. Gramaccioli CM, Pilati T, Demartin F (2002) Atomic displacement parameters for spessartine Mn3Al2Si3O12 and their lattice-dynamical interpretation. Acta Crystallogr A B58:965–969Google Scholar
  35. Griffen DT, Hatch DM, Phillips WR, Kulaksiz S (1992) Crystal chemistry and symmetry of a birefringent tetragonal pyralspite75-grandite25 garnet. Am Mineral 77:399–406Google Scholar
  36. Jamtveit B (1991) Oscillatory zonation patterns in hydrothermal grossular-andradite garnet: nonlinear dynamics in regions of immiscibility. Am Mineral 76:1319–1327Google Scholar
  37. Kingma KJ, Downs JW (1989) Crystal-structure analysis of a birefringent andradite. Am Mineral 74:1307–1316Google Scholar
  38. Kitamura K, Komatsu H (1978) Optical anisotropy associated with growth striation of yttrium garnet, Y3(Al, Fe)5O12. Kristallographie und Technik 13:811–816CrossRefGoogle Scholar
  39. Lager GA, Rossman GR, Rotella FJ, Schultz AJ (1987a) Neutron-diffraction structure of a low-water grossular at 20 K. Am Mineral 72:766–768Google Scholar
  40. Lager GA, Armbruster T, Faber J (1987b) Neutron and X-ray-diffraction study of hydrogarnet Ca3Al2(O4H4)3. Am Mineral 72:756–765Google Scholar
  41. Lager GA, Armbruster T, Rotella FJ, Rossman GR (1989) OH substitution in garnets: X-ray and neutron diffraction, infrared, and geometric-modeling studies. Am Mineral 74:840–851Google Scholar
  42. Larson AC, Von Dreele RB (2000) General structure analysis system (GSAS). Los Alamos National Laboratory report, LAUR 86-748Google Scholar
  43. Lee PL, Shu D, Ramanathan M, Preissner C, Wang J, Beno MA, Von Dreele RB, Ribaud L, Kurtz C, Antao SM, Jiao X, Toby BH (2008) A twelve-analyzer detector system for high-resolution powder diffraction. J Synchrotron Radiat 15:427–432CrossRefGoogle Scholar
  44. Locock AJ (2008) An excel spreadsheet to recast analyses of garnet into end-member components, and a synopsis of the crystal chemistry of natural silicate garnets. Comput Geosci 34:1769–1780CrossRefGoogle Scholar
  45. Munno R, Rossi G, Tadini C (1980) Crystal chemistry of kimzeyite from Stromboli, Aeolian Islands, Italy. Am Mineral 65:188–191Google Scholar
  46. Nakatsuka A, Yoshiasa A, Yamanaka T, Ito E (1999a) Structure refinement of a birefringent Cr-bearing majorite Mg3(Mg0.34Si0.34Al0.18Cr0.14)2Si3O12. Am Mineral 84:199–202Google Scholar
  47. Nakatsuka A, Yoshiasa A, Yamanaka T, Ohtaka O, Katsura T, Ito E (1999b) Symmetry change of majorite solid-solution in the system Mg3Al2Si3O12-MgSiO3. Am Mineral 84:1135–1143Google Scholar
  48. Novak GA, Gibbs GV (1971) The crystal chemistry of the silicate garnets. Am Mineral 56:1769–1780Google Scholar
  49. Novak GA, Meyer HOA (1970) Refinement of the crystal structure of a chrome pyrope garnet: an inclusion in natural diamond. Am Mineral 55:2124–2127Google Scholar
  50. Peterson RC, Locock AJ, Luth RW (1995) Positional disorder of oxygen in garnet: the crystal-structure refinement of schorlomite. Can Mineral 33:627–631Google Scholar
  51. Rietveld HM (1969) A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr 2:65–71CrossRefGoogle Scholar
  52. Sacerdoti M, Passaglia E (1985) The crystal structure of katoite and implications within the hydrogrossular group of minerals. Bull Mineral 108:1–8Google Scholar
  53. Schingaro E, Scordari F, Capitanio F, Parodi G, Smith DC, Mottana A (2001) Crystal chemistry of kimzeyite from Anguillara, Mts. Sabatini, Italy. Eur J Mineral 13:749–759CrossRefGoogle Scholar
  54. Schingaro E, Scordari F, Pedrazzi G, Malitesta C (2004) Ti and Fe speciation by X-ray photoelectron spectroscopy (XPS) and mössbauer spectroscopy for a full crystal chemical characterisation of Ti-garnets from Colli Albani (Italy). Anal Chim 94:185–196CrossRefGoogle Scholar
  55. Scordari F, Schingaro E, Pedrazzi G (1999) Crystal chemistry of melanites from Mt. Vulture (Southern Italy). Eur J Mineral 11:855–869Google Scholar
  56. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A A32:751–767CrossRefGoogle Scholar
  57. Shtukenberg AG, Punin YO, Frank-Kamenetskaya OV, Kovalev OG, Sokolov PB (2001) On the origin of anomalous birefringence in grandite garnets. Mineral Mag 65:445–459CrossRefGoogle Scholar
  58. Shtukenberg AG, Popov DY, Punin YO (2005) Growth ordering and anomalous birefringence in ugrandite garnets. Mineral Mag 69:537–550CrossRefGoogle Scholar
  59. Smyth JR, Madel RE, McCormick TC, Munoz JL, Rossman GR (1990) Crystal-structure refinement of a F-bearing spessartine garnet. Am Mineral 75:314–318Google Scholar
  60. Takéuchi Y, Haga N, Umizu S, Sato G (1982) The derivative structure of silicate garnets in grandite. Z Kristallogr 158:53–99Google Scholar
  61. Toby BH (2001) EXPGUI, a graphical user interface for GSAS. J Appl Crystallogr 34:210–213CrossRefGoogle Scholar
  62. Wang J, Toby BH, Lee PL, Ribaud L, Antao SM, Kurtz C, Ramanathan M, Von Dreele RB, Beno MA (2008) A dedicated powder diffraction beamline at the advanced photon source: commissioning and early operational results. Rev Sci Instrum 79:085105CrossRefGoogle Scholar
  63. Weber HP, Virgo D, Huggins FE (1975) A neutron-diffraction and 57Fe Mössbauer study of a synthetic Ti-rich garnet. Carnegie Inst Wash Year Book 74:575–579Google Scholar
  64. Wildner M, Andrut M (2001) The crystal chemistry of birefringent natural uvarovites: Part II. Single-crystal X-ray structures. Am Miner 86:1231–1251Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of GeoscienceUniversity of CalgaryCalgaryCanada

Personalised recommendations