Advertisement

Physics and Chemistry of Minerals

, Volume 40, Issue 5, pp 425–437 | Cite as

Shock-induced formation mechanism of seifertite in shergottites

  • Ulrich W. Bläß
Original Paper

Abstract

The Martian meteorites Shergotty, Zagami and Dhofar 378 have been re-investigated in order to elucidate the shock-induced formation of seifertite. The occurrence of orthorhombic seifertite (α-PbO2 structured SiO2) has been confirmed for the mesostasis of Shergotty and Zagami by transmission electron microscopy with lattice parameters of a = 4.05(1) Å, b = 5.05(1) Å and c = 4.45(1) Å. Seifertite crystals are interpreted as shock-induced transformation products occurring together with maskelynite of both plagioclase and alkali-feldspar composition in a largely preserved eutectic crystallisation texture. Shock-induced microstructures in accessory minerals demonstrate that these regions cannot have been completely re-molten. No further features indicating shock-pressures above ~30 GPa are detected. Hence, seifertite must have been formed below its stability field by a fast solid-state process. Significantly higher shock-pressures of Dhofar 378 indicate an inhibition of a potential seifertite crystallisation by resulting high post-shock temperatures. Crystallographic considerations reveal that a direct formation of seifertite from a high-pressure derivate of cristobalite is possible without breaking any silicon-oxygen bonds. Important implications arise from the existence of such a non-equilibrium pathway. Inferring shock-pressures from metastably formed phases appears implausible, and the transition pressure could be even below 30 GPa. Furthermore, the transformation product is determined by the precursor phase. Epitaxial intergrowth with other silica high-pressure polymorphs should be induced by certain features of the precursor, for example, planar defects, or heterogeneous strain conditions. Due to symmetrical considerations, seifertite will get amorphous during a potential back-transformation, which provides an explanation for the formation of numerous amorphous lamellae.

Keywords

Silica High-pressure Polymorphism Metastability Shergottites Transmission electron microscopy 

Notes

Acknowledgments

The author thanks Falko Langenhorst, Friedrich-Schiller-Universität Jena, Germany, for providing samples of Shergotty and Zagami and together with Ahmed El Goresy, Bayerisches Geoinstitut, Universität Bayreuth, Germany, for several discussions. Hubert Schulze, Bayerisches Geosinstitut, Universität Bayreuth, Germany, is kindly acknowledged for the precise preparation of thin sections. The manuscript benefits from suggestions of Roman Scala and two further anonymous reviewers. The work was supported by Deutsche Forschungsgemeinschaft (grants BL 917/1-1).

References

  1. Aoudjehane HC, Jambon A, Reynard B, Blanc P (2005) Silica as a shock index in shergottites: a cathodoluminescence study. Meteorit Planet Sci 40:967–979CrossRefGoogle Scholar
  2. Aramovich CJ, Herd CDK, Papike JJ (2002) Symplectites derived from metastable phases in Martian basaltic meteorites. Am Mineral 87:1351–1359Google Scholar
  3. Beck P, Gillet P, Gautron L, Daniel I, El Goresy A (2004) A new natural high-pressure (Na, Ca)-hexaluminosilicate [(CaxNa1−x)Al3+xSi3−xO11] in shocked Martian meteorites. Earth Planet Sci Lett 219:1–12CrossRefGoogle Scholar
  4. Bolfan-Casanova N, Andrault D, Amiguet E, Guignot N (2009) Equation of state and post-stishovite transformation of Al-bearing silica up to 100 GPa and 3000 K. Phys Earth Planet Inter 174:70–77CrossRefGoogle Scholar
  5. Chao ECT, Fahey JJ, Littler J, Milton DJ (1962) Stishovite, SiO2, a very high pressure new mineral from Meteor Crater, Arizona. J Geophys Res 67:419–421CrossRefGoogle Scholar
  6. Chopin C, Henry C, Michard A (1991) Geology and petrology of the coesite-bearing terrain, Dora-Maira Massif, Western Alps. Eur J Mineral 3:263–291Google Scholar
  7. Dera P, Prewitt CT, Boctor NZ, Hemley RJ (2002) Characterization of a high-pressure phase of silica from the Martian meteorite Shergotty. Am Mineral 87:1018–1023Google Scholar
  8. Dera P, Lazarz JD, Prakapenka VB, Barkley M, Downs RT (2011) New insights into the high-pressure polymorphism of SiO2 cristobalite. Phys Chem Minerals 38:517–529CrossRefGoogle Scholar
  9. Donadio D, Martonak R, Raiteri P, Parrinello M (2008) Influence of temperature and anisotropic pressure on the phase transitions in alpha-cristobalite. Phys Rev Lett 100:165502. doi: 10.1103/PhysRevLett.100.165502 CrossRefGoogle Scholar
  10. Dove MT, Craig MS, Keen DA, Marshall WG, Redfern SAT, Trachenko KO, Tucker MG (2000) Crystal structure of the high-pressure monoclinic phase-II of cristobalite, SiO2. Mineral Mag 64:569–576CrossRefGoogle Scholar
  11. Downs RT, Palmer DC (1994) The pressure behavior of alpha-cristobalite. Am Mineral 79:9–14Google Scholar
  12. Dubrovinsky LS, Saxena SK, Lazor P, Ahuja R, Eriksson O, Wills JM, Johansson B (1997) Experimental and theoretical identification of a new high-pressure phase of silica. Nature 388:362–365CrossRefGoogle Scholar
  13. Dubrovinsky LS, Dubrovinskaia NA, Saxena SK, Tutti F, Rekhi S, Le Bihan T, Shen GY, Hu J (2001) Pressure-induced transformations of cristobalite. Chem PhysLet 333:264–270Google Scholar
  14. Dubrovinsky LS, Dubrovinskaia NA, Prakapenka V, Seifert F, Langenhorst F, Dmitriev V, Weber HP, Le Bihan T (2004) A class of new high-pressure silica polymorphs. Phys Earth Planet Inter 143:231–240CrossRefGoogle Scholar
  15. El Goresy A, Dubrovinsky L, Sharp TG, Saxena SK, Chen M (2000) A monoclinic post-stishovite polymorph of silica in the Shergotty meteorite. Science 288:1632–1634CrossRefGoogle Scholar
  16. El Goresy A, Dubrovinsky L, Sharp TG, Chen M (2004) Stishovite and post-stishovite polymorphs of silica in the Shergotty meteorite: their nature, petrographic settings versus theoretical predictions and relevance to Earth’s mantle. J Phys Chem Sol 65:1597–1608CrossRefGoogle Scholar
  17. El Goresy A, Dera P, Sharp TG, Prewitt CT, Chen M, Dubrovinsky L, Wopenka B, Boctor NZ, Hemley RJ (2008) Seifertite, a dense orthorhombic polymorph of silica from the Martian meteorites Shergotty and Zagami. Eur J Mineral 20:523–528CrossRefGoogle Scholar
  18. Garg N, Sharma SM (2007) Classical molecular dynamical simulations of high pressure behavior of alpha cristobalite (SiO2). J Phys Condens Matter 19:456201. doi: 10.1088/0953-8984/19/45/456201 CrossRefGoogle Scholar
  19. Gatehouse BM, Grey IE, Lovering JF, Wark DA (1977) Structural studies on tranquillityite and related synthetic phases. Proceedings of the 8th lunar science conference, pp 1831–1838Google Scholar
  20. Gautron L, Madon M (1994) A study of the stability of anorthite in the PT conditions of Earths transition zone. Earth Planet Sci Lett 125:281–291CrossRefGoogle Scholar
  21. Haines J, Leger JM, Gorelli F, Hanfland M (2001) Crystalline post-quartz phase in silica at high pressure. Phys Rev Lett 87:155503. doi: 10.1103/PhysRevLett.87.155503 CrossRefGoogle Scholar
  22. Hemley RJ, Prewitt CT, Kingma KJ (1996) High pressure behaviour of silica, in: silica: physical behavior, geochemistry and materials applications. Rev Mineral 29:41–81Google Scholar
  23. Huang LP, Durandurdu M, Kieffer J (2006) Transformation pathways of silica under high pressure. Nat Mater 5:977–981CrossRefGoogle Scholar
  24. Hyde BG, Andersson S (1989) Inorganic crystal structures. Whiley, New York, pp 69–72Google Scholar
  25. Ikeda Y, Kimura M, Takeda H, Shimoda G, Kita NT, Morishita Y, Suzuki A, Jagoutz E, Dreibus G (2006) Petrology of a new basaltic shergottite: dhofar 378. Antarct Meteorite Res 19:20–44Google Scholar
  26. Klug DD, Rousseau R, Uehara K, Bernasconi M, Le Page Y, Tse JS (2001) Ab initio molecular dynamics study of the pressure-induced phase transformations in cristobalite. Phys Rev B 63:104106. doi: 10.1103/PhysRevB.63.104106 CrossRefGoogle Scholar
  27. Lakshtanov DL, Sinogeikin SV, Litasov KD, Prakapenka VB, Hellwig H, Wang JY, Sanches-Valle C, Perrillat JP, Chen B, Somayazulu M, Li J, Ohtani E, Bass JD (2007) The post-stishovite phase transition in hydrous alumina-bearing SiO2 in the lower mantle of the earth. Proc Nat Acad Sci 104:13588–13590CrossRefGoogle Scholar
  28. Langenhorst F, Poirier JP (2000a) Anatomy of black veins in Zagami: clues to the formation of high-pressure phases. Earth Planet Sci Lett 184:37–55CrossRefGoogle Scholar
  29. Langenhorst F, Poirier JP (2000b) ‘Eclogitic’ minerals in a shocked basaltic meteorite. Earth Planet Sci Lett 176:259–265CrossRefGoogle Scholar
  30. Leroux H, Cordier P (2006) Magmatic cristobalite and quartz in the NWA 856 Martian meteorite. Meteorit Planet Sci 41:913–923CrossRefGoogle Scholar
  31. Liang Y, Miranda CR, Scandolo S (2007) Tuning oxygen packing in silica by nonhydrostatic pressure. Phys Rev Lett 99:215504. doi: 10.1103/PhysRevLett.99.215504 CrossRefGoogle Scholar
  32. Lovering JF, Wark DA, Reid AF, Ware NG, Keil K, Prinz M, Bunch TE, El Goresy A, Ramdohr P, Brown GM, Peckett A, Phillips R, Cameron EN, Douglas JAV, Plant AG (1971) Tranquillityite: a new silicate mineral from Apollo 11 and Apollo 12 basaltic rocks. Proceedings of the Second Lunar Science Conference, vol 1, pp 39–45Google Scholar
  33. Malavergne V, Guyot F, Benzerara K, Martinez I (2001) Description of new shock-induced phases in the Shergotty, Zagami, Nakhla and Chassigny meteorites. Meteorit Planet Sci 36:1297–1305CrossRefGoogle Scholar
  34. Martonak R, Donadio D, Oganov AR, Parrinello M (2006) Crystal structure transformations in SiO2 from classical and ab initio metadynamics. Nat Mater 5:623–626CrossRefGoogle Scholar
  35. McSween HY, Grove TL, Lentz RCF, Dann JC, Holzheid AH, Riciputi LR, Ryan JG (2001) Geochemical evidence for magmatic water within Mars from pyroxenes in the Shergotty meteorite. Nature 409:487–490CrossRefGoogle Scholar
  36. Murakami M, Hirose K, Ono S, Ohishi Y (2003) Stability of CaCl2-type and alpha-PbO2-type SiO2 at high pressure and temperature determined by in situ X-ray measurements. Geophys Res Lett 30:1207. doi: 10.1029/2002GL016722 CrossRefGoogle Scholar
  37. Onodera A, Suito K, Namba J, Taniguchi Y, Horikawa T, Miyoshi M, Shimomura O, Kikegawa T (1997) Synchrotron X-ray-diffraction study of alpha-cristobalite at high pressure and high temperature. High Pres Res 15:307–319CrossRefGoogle Scholar
  38. Palmer DC, Finger LW (1994) Pressure-induced phase-transition in cristobalite—an X-ray-powder diffraction study to 4.4 GPa. Am Mineral 79:1–8Google Scholar
  39. Park J, Bogard DD, Mikouchi T, McKay GA (2008) Dhofar 378 Martian shergottite: evidence of early shock melting. J Geophys Res 113:E08007. doi: 10.1029/2007JE003035 CrossRefGoogle Scholar
  40. Sharp TG, El Goresy A, Wopenka B, Chen M (1999) A post-stishovite SiO2 polymorph in the meteorite Shergotty: implications for impact events. Science 284:1511–1513CrossRefGoogle Scholar
  41. Shoemaker E, Chao ECT (1961) New evidence for impact origin of Ries basin, Bavaria, Germany. J Geophys Res 66:3371–3378CrossRefGoogle Scholar
  42. Stöffler D, Ostertag R, Jammes C, Pfannschmidt G, Gupta PRS, Simon SB, Papike JJ, Beauchamp RH (1986) Shock metamorphism and petrography of the Shergotty achondrite. Geochim Cosmochim Acta 50:889–903CrossRefGoogle Scholar
  43. Teter DM, Hemley RJ, Kresse G, Hafner J (1998) High pressure polymorphism in silica. Phys Rev Lett 80:2145–2148CrossRefGoogle Scholar
  44. Tsuchida Y, Yagi T (1990) New pressure-induced transformations of silica at room-temperature. Nature 347:267–269CrossRefGoogle Scholar
  45. Van Cappellen E, Doukhan JC (1994) Quantitative transmission-X-ray microanalysis of ionic compounds. Ultramicroscopy 53:343–349CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Institut für GeowissenschaftenFriedrich-Schiller-Universität JenaJenaGermany
  2. 2.Institut für Anorganische ChemieTU Bergakademie FreibergFreibergGermany

Personalised recommendations