Physics and Chemistry of Minerals

, Volume 40, Issue 4, pp 319–330 | Cite as

Dehydration kinetics of antigorite using in situ high-temperature infrared microspectroscopy

  • Michiyo Sawai
  • Ikuo Katayama
  • Arisa Hamada
  • Makoto Maeda
  • Satoru Nakashima
Original Paper

Abstract

The dehydration kinetics of serpentine was investigated using in situ high-temperature infrared microspectroscopy. The analyzed antigorite samples at room temperature show relatively sharp bands at around 3,655–3,660 cm−1 (band 1), 3,570–3,595 cm−1 (band 2), and 3,450–3,510 cm−1 (band 3). Band 1 corresponds to the Mg–OH bond, and bands 2 and 3 correspond to OH associated with the substitution of Al for Si. Isothermal kinetic heating experiments at temperatures ranging from 625 to 700 °C showed a systematic decrease of the OH band absorbance with heating duration. The one-dimensional diffusion was found to provide the best fit to the experimental data, and diffusion coefficients were determined with activation energies of 219 ± 37 kJ mol−1 for the total water band area, 245 ± 46 kJ mol−1 for band 1, 243 ± 57 kJ mol−1 for band 2, and 256 ± 53 kJ mol−1 for band 3. The results indicate that the dehydration process is controlled by one-dimensional diffusion through the tetrahedral geometry of serpentine. Fluid production rates during antigorite dehydration were calculated from kinetic data and range from 3 × 10−4 to 3 × 10−5 \( {\text{m}}_{\text{fluid}}^{ 3} \,{\text{m}}_{\text{rock}}^{ - 3} \,{\text{s}}^{ - 1} \). The rates are high enough to provoke hydraulic rupture, since the relaxation rates of rocks are much lower than these values. The results suggest that the rapid dehydration of antigorite can trigger an intermediate-depth earthquake associated with a subducting slab.

Keywords

Serpentine Dehydration kinetics IR microspectroscopy Intermediate-depth earthquake 

References

  1. Auzende A-L, Daniel I, Reynard B, Lemaire C, Guyot F (2004) High-pressure behaviour of serpentine minerals: a Raman spectroscopic study. Phys Chem Miner 31:269–277CrossRefGoogle Scholar
  2. Avrami M (1939) Kinetics of phase change. J Chem Phys 7:1103–1112CrossRefGoogle Scholar
  3. Balan E, Saitta AM, Mauri F, Lemaire C, Guyot F (2002) First-principles calculation of the infrared spectrum of lizardite. Am Mineral 87:1286–1290Google Scholar
  4. Béjina F, Jaoul O, Liebermann RC (2003) Diffusion in minerals at high pressure: a review. Phys Earth Planet Inter 139:3–20CrossRefGoogle Scholar
  5. Bezacier L, Reynard B, Bass JD, Sanchez-Valle C, Moortèle BV (2010) Elasticity of antigorite, seismic detection of serpentinites, and anisotropy insubduction zones. Earth Planet Sci Lett 289:198–208CrossRefGoogle Scholar
  6. Brudzinski MR, Thurber CH, Hacker BR, Engdahl ER (2007) Global prevalence of double Benioff zones. Science 316:1472–1474CrossRefGoogle Scholar
  7. Cahn JW (1956) The kinetics of grain boundary nucleated reactions. Acta Metall 4:449–459CrossRefGoogle Scholar
  8. Candela PA, Crummett CD, Earnest DJ, Frank MR, Wylie AG (2007) Low-pressure decomposition of chrysotile as a function of time and temperature. Am Mineral 92:1704–1713CrossRefGoogle Scholar
  9. Carslaw HS, Jaeger JC (1959) Conduction of heat in solids. Clarendon, Oxford, p 510Google Scholar
  10. Cattaneo A, Gualtieri AF, Artioli G (2003) Kinetic study of the dehydroxylation of chrysotile asbestos with temperature by in situ XRPD. Phys Chem Miner 30:177–183CrossRefGoogle Scholar
  11. Chollet M, Daniel I, Koga KT, Petitgirard S, Morard G (2009) Dehydration kinetics of talc and 10 Å phase: consequences for subduction zone seismicity. Earth Planet Sci Lett 284:57–64CrossRefGoogle Scholar
  12. Chollet M, Daniel I, Koga KT, Morard G, Moortèle B (2011) Kinetics and mechanism of antigorite dehydration: implications for subduction zone seismicity. J Geophys Res 116. doi:10.1029/2010JB007739
  13. Dobson DP, Meredith PG, Boon SA (2002) Simulation of subduction zone seismicity by dehydration of serpentine. Science 298:1407–1410CrossRefGoogle Scholar
  14. Eggler DH, Ehmann AN (2010) Rate of antigorite dehydration at 2 GPa applied to subduction zones. Am Mineral 95:761–769CrossRefGoogle Scholar
  15. Farver JR, Yund RA (1991) Oxygen diffusion in quartz: dependence on temperature and water fugacity. Chem Geol 90:55–70CrossRefGoogle Scholar
  16. Farver JR, Yund RA (1992) Oxygen diffusion in a fine-grained quartz aggregate with wetted and nonwetted microstructures. J Geophys Res 97:14017–14029CrossRefGoogle Scholar
  17. Farver JR, Yund RA (1998) Oxygen grain boundary diffusion in natural and hot-pressed calcite aggregates. Earth Planet Sci Lett 161:189–200CrossRefGoogle Scholar
  18. Fukuda J, Yokoyama T, Kirino Y (2009) Characterization of the states and diffusivity of intergranular water in a chalcedoic quartz by high-temperature in situ infrared spectroscopy. Mineral Mag 73(5):825–835CrossRefGoogle Scholar
  19. Gualtieri AF, Giacobbe C, Viti C (2012) The dehydroxylation of serpentine group minerals. Am Mineral 97:666–680CrossRefGoogle Scholar
  20. Hacker BR, Peacock SM, Abers GA, Holloway SD (2003) Subduction factory 2. Are intermediate-depth earthquakes in subducting slabs linked to metamorphic dehydration reactions? J Geophys Res 108(B1). doi:10.1029/2001JB001129
  21. Hasegawa A, Umino N, Takagi A (1978) Double-planed deep seismic zone and upper mantle structure in the northeastern Japan arc. Geophys J R Astron Soc 54(281):296Google Scholar
  22. Heller-Kallai L, Yariv SH, Gross S (1975) Hydroxyl-stretching frequencies of serpentine minerals. Mineral Mag 40:197–200Google Scholar
  23. Hilairet N, Reynard B, Wang Y, Daniel I, Merkel S, Nishiyama N, Petitgirard S (2007) High-pressure creep of serpentine, interseismic deformation, and initiation of subduction. Science 318:1910–1913CrossRefGoogle Scholar
  24. Ingrin J, Hercule S, Charton T (1995) Diffusion of hydrogen in diopside: results of dehydrationexperiments. J Geophys Res 100:15489–15499CrossRefGoogle Scholar
  25. Inoue T, Yoshimi I, Yamada A, Kikegawa T (2009) Time-resolved X-ray diffraction analysis of the experimental dehydration of serpentine at high pressure. J Mineral Petro Sci 104:105–109CrossRefGoogle Scholar
  26. Kao H, Liu L-G (1995) A hypothesis for the seismogenesis of a double seismic zone. Geophys J Int 123:71–84CrossRefGoogle Scholar
  27. Kirby SH, Engdahl ER, Delinger R (1996) Intermediate-depth intraslab earthquakes and arc volcanism as physical expressions of crustal and uppermost mantle metamorphism in subducting slabs. In: Debout GE (ed), Subduction: top to the Bottom. Geophys Monogr Ser 96:195–214Google Scholar
  28. Mackwell SJ, Kohlstedt DL (1990) Diffusion of Hydrogenin Olivine: implications for Water in the Mantle. J Geophys Res 95:5079–5088CrossRefGoogle Scholar
  29. Nishiyama T (1992) Mantle hydrology in a subduction zone: a key to episodic geologic events, double Wadati-Benioff zones and magma genesis. Math Seismol VII Rep Stat Math Inst 34:31–67Google Scholar
  30. Okumura S, Nakashima S (2004) Water diffusion in rhyolitic glasses as determined by in situ IR spectroscopy. Phys Chem Miner 31:183–189CrossRefGoogle Scholar
  31. Okumura S, Nakashima S (2006) Water diffusion in basaltic to dacitic glasses. Chem Geol 227:70–82CrossRefGoogle Scholar
  32. Omori S, Kamiya SI, Maruyama S, Zhao Y (2002) Morphology of the intraslab seismic zone and devolatilization phase equilibria of the subducting slab peridotite. Bull Earthq Res Inst Univ Tokyo 76:455–478Google Scholar
  33. Peacock SM (2001) Are the lower planes of double seismic zones caused by serpentine dehydration in subducting oceanic mantle? Geology 29(4):299–302CrossRefGoogle Scholar
  34. Perrillat J-P, Daniel I, Koga KT, Reynard B, Cardon H, Crichton WA (2005) Kinetics of antigorite dehydration: a real-time X-ray diffraction study. Earth Planet Sci Lett 236:899–913CrossRefGoogle Scholar
  35. Reynard B, Wunder B (2006) High-pressure behavior of synthetic antigorite in the MgO-SiO2-H2O system from Raman spectroscopy. Am Mineral 91:459–462CrossRefGoogle Scholar
  36. Serna CJ, White JL, Velde BD (1979) The effect of aluminium on the infra-red spectra of 7 Å trioctahedral minerals. Mineral Mag 43(5):141–148CrossRefGoogle Scholar
  37. Tokiwai K, Nakashima S (2010) Dehydration kinetics of muscovite by in situ infrared microspectroscopy. Phys Chem Miner 37:91–101CrossRefGoogle Scholar
  38. Ulmer P, Trommsdorff V (1995) Serpentine stability to mantle dephts and subductionrelated magmatism. Science 268:858–861CrossRefGoogle Scholar
  39. Yamakasi T, Seno T (2003) Double seismic zone and dehydration embrittlement of the subducting slab. J Geophys Res 108(B4):2212. doi:10.1029/2002JB001918 CrossRefGoogle Scholar
  40. Yanagisawa N, Fujimoto K, Nakashima S, Kurata Y, Sanada N (1997) Micro FT-IR study of the hydration-layer during dissolution of silica glass. Geochim Cosmochim Acta 61:1165–1170CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Michiyo Sawai
    • 1
  • Ikuo Katayama
    • 1
  • Arisa Hamada
    • 1
  • Makoto Maeda
    • 2
  • Satoru Nakashima
    • 3
  1. 1.Department of Earth and Planetary Systems Science, Graduate School of ScienceHiroshima UniversityHigashi HiroshimaJapan
  2. 2.Department of Technical CenterHiroshima UniversityHigashi HiroshimaJapan
  3. 3.Department of Earth and Space ScienceOsaka UniversityToyonakaJapan

Personalised recommendations