Physics and Chemistry of Minerals

, Volume 40, Issue 3, pp 271–285 | Cite as

The high-pressure phase diagram of synthetic epsomite (MgSO4·7H2O and MgSO4·7D2O) from ultrasonic and neutron powder diffraction measurements

  • E. L. Gromnitskaya
  • O. F. Yagafarov
  • A. G. Lyapin
  • V. V. Brazhkin
  • I. G. Wood
  • M. G. Tucker
  • A. D. Fortes
Original Paper


We present an ultrasonic and neutron powder diffraction study of crystalline MgSO4·7H2O (synthetic epsomite) and MgSO4·7D2O under pressure up to ~3 GPa near room temperature and up to ~2 GPa at lower temperatures. Both methods provide complementary data on the phase transitions and elasticity of magnesium sulphate heptahydrate, where protonated and deuterated counterparts exhibit very similar behaviour and properties. Under compression in the declared pressure intervals, we observed three different sequences of phase transitions: between 280 and 295 K, phase transitions occurred at approximately 1.4, 1.6, and 2.5 GPa; between 240 and 280 K, only a single phase transition occurred; below 240 K, there were no phase transformations. Overall, we have identified four new phase fields at high pressure, in addition to that of the room-pressure orthorhombic structure. Of these, we present neutron powder diffraction data obtained in situ in the three phase fields observed near room temperature. We present evidence that these high-pressure phase fields correspond to regions where MgSO4·7H2O decomposes to a lower hydrate by exsolving water. Upon cooling to liquid nitrogen temperatures, the ratio of shear modulus G to bulk modulus B increases and we observe elastic softening of both moduli with pressure, which may be a precursor to pressure-induced amorphization. These observations may have important consequences for modelling the interiors of icy planetary bodies in which hydrated sulphates are important rock-forming minerals, such as the large icy moons of Jupiter, influencing their internal structure, dynamics, and potential for supporting life.


Epsomite High pressure Polymorphism Ultrasonic Neutron powder diffraction 


  1. Alexandrov KS, Rhyzhova TV, Rostuntseva AI (1963) Elastic properties of some sulfate heptahydrate crystals. Sov Phys Crystallogr 7:753–755Google Scholar
  2. Brazhkin VV, Lyapin AG (1996) Lattice instability approach to the problem of high-pressure solid-state amorphization. High Press Res 15:9–30CrossRefGoogle Scholar
  3. Brazhkin VV, Lyapin AG, Stalgorova OV, Gromnitskaya EL, Popova SV, Tsiok OB (1997) On the nature of amorphous-to-amorphous and crystal-to-amorphous transitions under high pressure. J Non Cryst Solids 212:49–54CrossRefGoogle Scholar
  4. Bridgman PW (1948a) Rough compression of 177 substances to 40,000 kg/cm2. Proc Am Acad Arts Sci 76:71–87CrossRefGoogle Scholar
  5. Bridgman PW (1948b) The linear compression of various single crystals to 30,000 kg/cm2. Proc Am Acad Arts Sci 76:89–99CrossRefGoogle Scholar
  6. Chou I, Seal RR (2007) Magnesium and calcium sulfate stabilities and the water budget on Mars. J Geophys Res Planets 112:E11004CrossRefGoogle Scholar
  7. Churagulov BR (1987) Some characteristics of the effect of a pressure (up to 1000 MPa) on temperatures of phase-transformations and concentration of saturated solutions on lines of the phase-equilibria on R-T-diagrams of salt-water binary-systems. Zh Neorg Khim 32(10):2527–2536Google Scholar
  8. Churagulov BR, Kalashnikov YA (1969) Effect of pressure on the partial dehydration of zinc sulphate heptahydrate. Russ J Phys Chem 43(2):258–262Google Scholar
  9. Dalton JB (2010) Spectroscopy of icy moon surface materials. Space Sci Rev 153(1–4):219–247CrossRefGoogle Scholar
  10. Dalton JB, Prieto-Ballesteros O, Kargel JS, Jamieson CS, Jolivet J, Quinn R (2005) Spectral comparison of heavily hydrated salts with disrupted terrains on Europa. Icarus 177(2):472–490CrossRefGoogle Scholar
  11. Dalton JB, Shirley JH, Kamp LW (2012) Europa’s icy bright plains and dark linea: exogenic and endogenic contributions to composition and surface properties. J Geophys Res 117:E03003CrossRefGoogle Scholar
  12. Dougherty AJ, Hogenboom DL, Kargel JS (2007) Volumetric and optical studies of high pressure phases of MgSO4-H2O with applications to Europa. Lunar Planet Sci Conf 38:2275Google Scholar
  13. Fateev EG (2012) Cвepxнизкaя yпpyгaя cтaбильнocть MgSO4 − H2O льдa. JETP Lett 38(8):1–9Google Scholar
  14. Feldman WC, Mellon MT, Maurice S, Prettyman TH, Carey JW, Vaniman DT, Fialips CI, Kargel JS, Elphic RC, Funsten HO, Laurence DJ, Tokar RL (2004) Contributions from hydrated states of MgSO4 to the reservoir of hydrogen at equatorial latitudes on Mars. Lunar Planet Sci Conf 35:2035Google Scholar
  15. Ferraris G, Jones DW, Yerkess J (1973) Refinement of the crystal structure of magnesium sulphate heptahydrate (Epsomite) by neutron diffraction. J Chem Soc, Dalton Trans 1973:816–821CrossRefGoogle Scholar
  16. Fortes AD, Choukroun M (2010) Phase behaviour of ices and hydrates. Space Sci Rev 153(1–4):185–218CrossRefGoogle Scholar
  17. Fortes AD, Wood IG, Alfredsson M, Vočadlo L, Knight KS (2006a) The thermoelastic properties of MgSO4·7D2O (epsomite) from powder neutron diffraction and ab initio simulation. Eur J Miner 18(4):449–462CrossRefGoogle Scholar
  18. Fortes AD, Wood IG, Vočadlo L, Brand HEA, Grindrod PM, Joy KH, Tucker MG (2006b) The phase behaviour of epsomite (MgSO4·7H2O) to 50 kbar: planetary implications. Lunar Planet Sci Conf 37:1029Google Scholar
  19. Fortes AD, Wood IG, Alfredsson M, Vočadlo L, Knight KS, Marshall WG, Tucker MG, Fernandez-Alonso F (2007) The high-pressure phase diagram of ammonia dihydrate. High Press Res 27(2):201–212CrossRefGoogle Scholar
  20. Fortes AD, Wood IG, Brand HEA, Tucker MG (2008) The effect of pressure on the structure of meridianiite (MgSO4·11D2O). ISIS Experimental Report RB 820064, Rutherford Appleton LaboratoryGoogle Scholar
  21. Fortes AD, Wood IG, Knight KS (2008b) The crystal structure and thermal expansion tensor of MgSO4·11D2O (meridianiite) determined by neutron powder diffraction. Phys Chem Miner 35(4):207–221CrossRefGoogle Scholar
  22. Fortes AD, Wood IG, Tucker MG (2009) The effect of pressure on the structure of meridianiite (MgSO4·11D2O). ISIS Experimental Report RB 910226, Rutherford Appleton LaboratoryGoogle Scholar
  23. Fortes AD, Lemée-Cailleau M–H, Knight KS, Jura M (2010) Magnesium sulfate trihydrate: an elusive mineral on Earth and Mars? International Mineralogical Association, 20th General Meeting, Budapest, August 21–27th 2010. See also, Institut Laue Langevin experimental report 5-11-360 (2009), and ISIS Experimental Report RB1010078, Rutherford Appleton LaboratoryGoogle Scholar
  24. Fortes AD, Browning F, Wood IG (2012a) Cation substitution in synthetic meridianiite (MgSO4·11H2O) I: X-ray powder diffraction analysis of quenched polycrystalline aggregates. Phys Chem Miner 39(5):419–441CrossRefGoogle Scholar
  25. Fortes AD, Browning F, Wood IG (2012b) Cation substitution in synthetic meridianiite (MgSO4·11H2O) II: variation in unit-cell parameters determined from X-ray powder diffraction data. Phys Chem Miner 39(6):443–454CrossRefGoogle Scholar
  26. Fortes AD, Wood IG, Alfredsson M, Vočadlo L, Knight KS, Marshall WG, Tucker MG, Fernandez-Alonso F (2012c) Corrigendum. High Press Res 32:337. doi:10.1080/08957959.2012.673603 Google Scholar
  27. Fredericksson K, Kerridge JF (1988) Carbonates and sulfates in CI chondrites–formation by aqueous alteration on the parent body. Meteoritics 23:35–44CrossRefGoogle Scholar
  28. Genceli FE, Horikawa S, Iizuka Y, Sakurai T, Hondoh T, Kawamura T, Witkamp G (2009) Meridianiite detected in ice. J Glaciol 55:117–122CrossRefGoogle Scholar
  29. Grasset O, Sotin C, Mousis O, Mevel L (2000) High pressure experiments in the system MgSO4–H2O: implications for Europa. Lunar Planet Sci Conf 31:1386Google Scholar
  30. Grasset O, Mevel L, Mousis O, Sotin C (2001) The pressure dependence of the eutectic composition in the system MgSO4-H2O: implications for the deep liquid layer of icy satellites. Lunar Planet Sci Conf 32:1524Google Scholar
  31. Gromnitskaya EL, Stal’gorova OV, Brazhkin VV, Lyapin AG (2001) Ultrasonic study of the nonequilibrium pressure-temperature diagram of H2O. Phys Rev B 64:094205–094221CrossRefGoogle Scholar
  32. Gromnitskaya EL, Yagafarov OF, Lyapin AG, Brazhkin VV, Fortes AD (2010) Ultrasonic study of epsomite (MgSO4·7H2O) under pressure. High Press Res 30(1):51–54CrossRefGoogle Scholar
  33. Hodenburg RF, Kühn R (1967) Zur Kenntnis der Magnesiumsulfathydrate und der Effloreszenzen des Kieserits von Hartsalzen. Kali und Steinsalz 4(10):326–340Google Scholar
  34. Hogenboom DL, Kargel JS, Ganasan JP, Lee L (1995) Magnesium sulfate-water to 400 MPa using a novel piezometer: densities, phase equilibria, and planetological implications. Icarus 115(2):258–277CrossRefGoogle Scholar
  35. Jahn S, Schmidt C (2010) Speciation in aqueous MgSO4 fluids at high pressures and high temperatures from ab initio molecular dynamics and Raman spectroscopy. J Phys Chem B 114(47):15565–15572CrossRefGoogle Scholar
  36. Jambor JL, Nordstrom DK, Alpers CN (2000) Metal-sulfate salts from sulfide mineral oxidation. Rev Mineral 40:303–350CrossRefGoogle Scholar
  37. Kargel JS (1991) Brine volcanism and the interior structures of asteroids and icy satellites. Icarus 94(2):369–390CrossRefGoogle Scholar
  38. Larsen AC, Von Dreele RB (2000) General Structure Analysis System (GSAS). Los Alamos National Laboratory Report LAUR 86–748, Los Alamos, New Mexico
  39. Le Bail A (2005) Whole powder pattern decomposition methods and applications–a retrospection. Powder Diffr 20:316–326CrossRefGoogle Scholar
  40. Livshits LD, Genshaft YS, Ryabin YN (1963) Equilibrium diagram of the crystal hydrates of MgSO4 at high pressures. Russ J Inorg Chem 8:676–678Google Scholar
  41. Lyapin AG, Brazhkin VV (1996) Pressure-induced lattice instability and solid-state amorphization. Phys Rev B 54:12036–12048CrossRefGoogle Scholar
  42. Ma H, Bish DL, Wang H-W, Chipera SJ (2009a) Determination of the crystal structure of sanderite, MgSO4·2H2O, by X-ray powder diffraction and the charge flipping method. Am Mineral 94:622–625CrossRefGoogle Scholar
  43. Ma H, Bish DL, Wang H-W, Chipera SJ (2009b) Structure determination of the 2.5 hydrate MgSO4 by simulated annealing. Am Mineral 94:1071–1074CrossRefGoogle Scholar
  44. Marshall WG, Francis DJ (2002) Attainment of near hydrostatic conditions using the Paris-Edinburgh cell. J Appl Cryst 35(1):122–125Google Scholar
  45. McCord TB, Hansen GB, Matson DL, Johnson TV, Crowley JK, Fanale FP, Carlson RW, Smythe WD, Martin PD, Hibbitts CA, Granahan JC, Ocampo A, the NIMS Team (1999) Hydrated salt minerals on Europa’s surface from the Galileo Near-Infrared Mapping Spectrometer (NIMS) investigation. J Geophys Res Planets 104(E5):11827–11851CrossRefGoogle Scholar
  46. McCord TB, Hansen GB, Hibbitts CA (2001) Hydrated salts on Ganymede’s surface: evidence of an ocean below. Science 292:1523–1525CrossRefGoogle Scholar
  47. McSkimin HJ (1964) Ultrasound methods of measurements of mechanical characteristics in liquids and solids. In: Mason WP (ed) Physical Acoustics, Principles and Methods, vol I, Methods and devices, Part A. Academic press, New YorkGoogle Scholar
  48. Milliken RE, Mustard JF, Poulet F, Jouglet D, Bibring J-P, Gondet B, Langevin Y (2007) Hydration state of the martian surface as seen by Mars Express OMEGA:2. H2O content of the surface. J Geophys Res 112, E08S07Google Scholar
  49. Mishima O, Calvert LD, Whalley E (1984) ‘Melting ice’ I at 77 K and 10 kbar: a new method of making amorphous solids. Nature 310:393–395CrossRefGoogle Scholar
  50. Murnaghan FD (1944) The compressibility of media under extreme pressures. Proc Natl Acad Sci USA 30(9):244–247Google Scholar
  51. Nakamura RS (2003) High pressure sulfate-water system in the large icy satellites. Eos Trans AGU 84(46): Fall Meeting Suppl, Abstract P51B-0449Google Scholar
  52. Nakamura R, Ohtani E (2011) The high-pressure phase relation of the MgSO4-H2O system and its implications for the internal structure of Ganymede. Icarus 211(1):648–654CrossRefGoogle Scholar
  53. Pantea C, Rickel DG, Migliori A, Leisure RG, Jianzhong Zhang J, Zhao Y, El-Khatib S, Li B (2005) Digital ultrasonic pulse-echo overlap system and algorithm for unambiguous determination of pulse transit time. Rev Sci Instr 76:114902CrossRefGoogle Scholar
  54. Peterson RC, Wang R (2006) Crystal molds on Mars: melting of a possible new mineral species to create Martian chaotic terrain. Geology 34(11):957–960CrossRefGoogle Scholar
  55. Peterson RC, Nelson W, Madu B, Shurvell HF (2007) Meridianiite: a new species observed on Earth and predicted to exist on Mars. Am Mineral 92(10):1756–1759CrossRefGoogle Scholar
  56. Solomonidou A, Coustenis A, Bampasidis G, Kyriakopoulos K, Moussas X, Bratsolis E, Hirtzig M (2011) Water oceans of Europa and other moons: implications for life in other solar systems. J Cosmol 13:4191–4211Google Scholar
  57. Sood RR, Stager RA (1966) Pressure-induced dehydration reactions and transitions in inorganic hydrates. Science 154:388–390CrossRefGoogle Scholar
  58. Spencer RJ (2000) Sulfate minerals in evaporite deposits. Rev Min Geochem 40(1):173–192CrossRefGoogle Scholar
  59. Stal’gorova OV, Gromnitskaya EL, Dmitriev DR, Voronov FF (1996) Ultrasonic piezometer for the 0–2.0 GPa pressure and 77–300 K temperature range. Instr Exp Tech 39:880–884Google Scholar
  60. Stal’gorova OV, Gromnitskaya EL, Brazhkin VV (1995) Experimental confirmation of the instability of the crystal structure of Ih ice prior to amorphization under pressure. JETP Lett 62:356–360Google Scholar
  61. Strässle T, Saitta AM, Klotz S, Braden M (2004) Phonon dispersion of ice under pressure. Phys Rev Lett 93:225901CrossRefGoogle Scholar
  62. Sundara Rao RVG (1950) Elastic constants of the heptahydrates of magnesium and zinc sulphates. Proc Indian Acad Sci A 31:365–370Google Scholar
  63. Toby BH (2001) EXPGUI a graphical user interface for GSAS. J Appl Cryst 34(2):210–213Google Scholar
  64. Vance S (2007) High pressure and low temperature equations of state for aqueous magnesium sulfate: applications to the search for life in extraterrestrial oceans, with particular reference to Europa. PhD Thesis, University of WashingtonGoogle Scholar
  65. Voronkov AA (1958) The piezoelectric, elastic and dielectric properties of crystals of MgSO4·7H2O. Sov Phys–Crystallogr 3:722–725Google Scholar
  66. Voronov FF, Chernysheva EV (1999) Anomalies in the elastic properties of silicious iron single crystals at pressures of up to 9 GPa and the α–ε phase transformation. Phys Solid State (St. Petersburg) 41:462–467CrossRefGoogle Scholar
  67. Wang A, Freeman JJ, Chou I-M, Joliff BL (2011) Stability of Mg-sulfates at −10 °C and the rates of dehydration/rehydration processes under conditions relevant to Mars. J Geophys Res 116:E120006CrossRefGoogle Scholar
  68. Yakuschenko AN, Churagulov BR (1984) Pressure effect on temperatures of phase transitions in the zinc-sulfate water system. Zh Fiz Khim 58(2):311–314Google Scholar
  69. Zolotov MY, Kuzmin RO, Shock EL (2004) Mineralogy, abundance, and hydration state of sulfates and chlorides at the Mars Pathfinder landing site. Lunar Planet Sci Conf 35:1465Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • E. L. Gromnitskaya
    • 1
  • O. F. Yagafarov
    • 1
  • A. G. Lyapin
    • 1
  • V. V. Brazhkin
    • 1
  • I. G. Wood
    • 2
    • 3
  • M. G. Tucker
    • 4
  • A. D. Fortes
    • 2
    • 3
  1. 1.Institute for High Pressure PhysicsRussian Academy of SciencesMoscow regionRussia
  2. 2.Department of Earth SciencesUniversity College LondonLondonUK
  3. 3.Centre for Planetary Sciences at UCL/BirkbeckLondonUK
  4. 4.ISIS Facility, Rutherford Appleton LaboratoryHarwell Science and Innovation CampusOxfordshireUK

Personalised recommendations