Physics and Chemistry of Minerals

, Volume 40, Issue 2, pp 115–132 | Cite as

Combination of multi-scale and multi-edge X-ray spectroscopy for investigating the products obtained from the interaction between kaolinite and metallic iron in anoxic conditions at 90 °C

  • Camille RivardEmail author
  • Emmanuelle Montargès-Pelletier
  • Delphine Vantelon
  • Manuel Pelletier
  • Chithra Karunakaran
  • Laurent J. Michot
  • Frédéric Villieras
  • Nicolas Michau
Original Paper


In the context of radioactive waste repository in geological formation, kaolinite-metallic iron interaction in chlorine solution was conducted in batch experiments, under anoxic conditions at 90 °C during 9 months. After a mineralogical characterization at a global scale, products were analyzed at the micrometer and nanometer scales by X-ray absorption spectroscopic techniques (XAS and STXM). Absorption at Al, Si and Fe edges was investigated to have a complete overview of the distribution and status of constituting elements. Whereas Si K-edge results do not evidence significant evolution of silicon status, investigations at Al K-edge and Fe L-edges demonstrate variations at aggregate and particle scales of IVAl:VIAl and Fe2+:Fe3+ ratios. Spectroscopic data evidence the systematic crystallization of Fe-serpentines onto the remaining particles of kaolinite and the absence of pure species (kaolinite or Fe-serpentines). Combination of spatially resolved spectroscopic analyses and TEM-EDXS elemental distribution aims to calculate unit cell formulae of Fe-serpentines layers and abundance of each species in mixed particles. For most of the investigated particles, results reveal that the variations of particles composition are directly linked to the relative contributions of kaolinite and Fe-berthierine in mixed particles. However, for some particles, microscale investigations evidence crystallization of two other Fe-serpentines species, devoid of aluminum, cronstedtite and greenalite.


X-ray absorption spectroscopy XAS STXM Phyllosilicate Berthierine Iron 



This work was financially supported by Andra (Agence nationale pour la gestion des déchets radioactifs—French national radioactive waste management agency). The STXM data were collected at the Canadian Light Source, which is supported by the Natural Sciences and Engineering Research Council of Canada, the National Research Council Canada, the Canadian Institutes of Health Research, the Province of Saskatchewan, Western Economic Diversification Canada, and the University of Saskatchewan. We also thank SOLEIL facility for financial and technical supports. This work could not have been done without the collaboration of LUCIA beamline staff Nicolas Tercera, Anne-Marie Flank and Pierre Lagarde. We also thank Valérie Briois from SAMBA beamline for collecting data at Fe K-edge on her “home beamtime”. We gratefully thank Jaafar Ghanbaja for TEM investigations. A special thanks goes to Yves Moëlo who provided berthierine sample and to Markus Plaschke who kindly shared Fe–L edges data on reference samples so that we could operate validation tests on the fitting procedure of Fe–L spectra.

Supplementary material

269_2012_552_MOESM1_ESM.doc (30 kb)
Supplementary material 1 (DOC 30 kb)


  1. Aja SU, Darby Dyar M (2002) The stability of Fe-Mg chlorites in hydrothermal solutions—I. Results of experimental investigations. Appl Geochem 17:1219–1239CrossRefGoogle Scholar
  2. Bailey SW (1988) Odinite, a new dioctahedral-trioctahedral Fe3+-rich 1:1 clay mineral. Clay Miner 23:237–247CrossRefGoogle Scholar
  3. Bardot F, Villiéras F, Michot LJ, François M, Gérard G, Cases JM (1998) High resolution gas adsorption study on illites permuted with various cations: assessment of surface energetic properties. J Dispers Sci Technol 19:739–759CrossRefGoogle Scholar
  4. Belin S, Briois V, Traverse A, Idir M, Moreno T, Ribbens M (2005) SAMBA a new beamline for X-ray absorption Spectroscopy in the 4–40 keV range. Phys Scripta T115:980–983CrossRefGoogle Scholar
  5. Brindley GW (1982) Chemical compositions of berthierines-a review. Clays Clay Miner 30:153–155CrossRefGoogle Scholar
  6. Briois V, Vantelon D, Villain F, Couzinet B, Flank AM, Lagarde P (2007) Combining two structural techniques on the micrometer scale: micro-XAS and micro-Raman spectroscopy. J Synchrotron Radiat 14:403–408CrossRefGoogle Scholar
  7. Calvert CC, Brown A, Brydson R (2005) Determination of the local chemistry of iron in inorganic and organic materials. J Electron Spectrosc Relat Phenom 143:173–187CrossRefGoogle Scholar
  8. Crocombette JP, Pollak M, Jollet F, Thromat N, Gautier-Soyer M (1995) X-Ray absorption spectroscopy at the Fe L2,3 threshold in iron oxides. Phys Rev B: Condens Matter 52:3143–3150CrossRefGoogle Scholar
  9. de Combarieu G, Barpoux P, Minet Y (2007) Iron corrosion in Callovo-Oxfordian argillite: from experiments to thermodynamic/kinetic modelling. Phys Chem Earth 32:346–358CrossRefGoogle Scholar
  10. Devaraju TC, Laajoki K, Subbarao G (2000) Retrograde chlorine-bearing greenalite from the iron-formation of Kudremukh, Karnataka, India. Neues Jahrbuch für Mineralogie, Monatshefte 5:207–216Google Scholar
  11. Farges F, Lefrère Y, Rossano S, Berthereau A, Calas G, Brown GE Jr (2004) The effect of redox state on the local structural environment of iron in silicate glasses: a combined XAFS spectroscopy, molecular dynamics, and bond valence study. J Non-Cryst Solids 334:176–188CrossRefGoogle Scholar
  12. Flank AM, Cauchon G, Lagard P, Bac S, Janousch M, Wetter R, Dubuisson JM, Idir M, Langlois F, Moreno T, Vantelon D (2006) LUCIA, a microfocus soft XAS beamline. Nucl Instrum Methods Phys Res, Sect A 246:269–274CrossRefGoogle Scholar
  13. Geiger CA, Henry DL, Bailey SW, Maj JJ (1983) Crystal structure of cronstedtite-2H2. Clays Clay Miner 31:97–108CrossRefGoogle Scholar
  14. Guggenheim S, Bailey SW (1989) An occurence of a modulated serpentine related to the greenalite-caryopilite series. Am Miner 74:637–641Google Scholar
  15. Hitchcock AP (2001) Soft X-ray spectromicroscopy of polymers and biopolymer interfaces. J Synchrotron Radiat 8:66–71CrossRefGoogle Scholar
  16. Ildefonse Ph, Cabaret D, Sainctavit Ph, Calas G, Flank AM, Lagarde P (1998) Aluminium X_ray absorption near edge structure in model compounds and Earth’s surface minerals. Phys Chem Miner 25:112–121CrossRefGoogle Scholar
  17. Jacobsen C, Wirick S, Flynn G, Zimba C (2000) Soft X-Ray spectroscopy from image sequences with sub-100 nm spatial resolution. J Microsc 197:173–184CrossRefGoogle Scholar
  18. Kaznatcheev KV, Karunakaran Ch, Lanke UD, Urquhart SG, Obst M, Hitchcock AP (2007) Soft X-ray spectromicroscopy beamline at the CLS: commissioning results. Nucl Instrum Methods Phys Res, Sect A 582:96–99CrossRefGoogle Scholar
  19. Kogure T (2002) Identification of polytypic groups in hydrous phyllosilicates using electron back-scattering patterns. Am Miner 87:1678–1685Google Scholar
  20. Kohler E (2001) Réactivité des mélanges synthétiques smectite/kaolinite et smectite/aluminium gel en présence d’un excès de fer métal. Dissertation (DRRT) Evry Val d’Essonne UniversityGoogle Scholar
  21. Lerotic M, Jacobsen C, Schäfer T, Vogt S (2004) Cluster analysis of soft X-ray spectromicroscopy data. Ultramicroscopy 100:35–57CrossRefGoogle Scholar
  22. Lerotic M, Jacobsen C, Gillow JB, Francis AJ, Wirick S, Vogt S, Maser J (2005) Cluster analysis in soft X-ray spectromicroscopy: finding the patterns in complex specimens. J Electron Spectrosc Relat Phenom 144–147:1137–1143CrossRefGoogle Scholar
  23. Li D, Bancroft GM, Fleet ME, Feng XH (1995a) Silicon K-edge XANES spectra of silicate minerals. Phys Chem Miner 22:115–122Google Scholar
  24. Li D, Bancroft GM, Fleet ME, Feng XH, Pan Y (1995b) Al K-edge XANES spectra of aluminosilicate minerals. Am Miner 80:432–440Google Scholar
  25. Mermut AR, Cano AF (2001) Baseline studies of the clay mineral society source clays: chemical analyses of major elements. Clays Clay Miner 49:381–386CrossRefGoogle Scholar
  26. Miot J, Benzerara K, Morin G, Kappler A, Bernard S, Obst M, Férard C, Skouri-Panet F, Guigner JM, Posth N, Galvez M, Brown GE Jr, Guyot F (2009) Iron biomineralization by anaerobic neutrophilic iron-oxidizing bacteria. Geochim Cosmochim Acta 73:696–711CrossRefGoogle Scholar
  27. Newville M (2001) EXAFS analysis using FEFF and FEFFIT. J Synchrotron Radiat 8:96–100CrossRefGoogle Scholar
  28. Newville M, Livin P, Yacoby Y, Rehr JJ, Stern EA (1993) Near-edge x-ray-absorption fine structure of Pb: a comparison of theory and experiment. Phys Rev B: Condens Matter 47:14126–14131CrossRefGoogle Scholar
  29. Perronnet M (2004) Réactivité des matériaux argileux dans un contexte de corrosion métal. Application au stockage des déchets radioactifs en site argileux. PhD Thesis INPL NancyGoogle Scholar
  30. Ravel B, Newville M (2005) ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J Synchrotron Radiat 12:537–541CrossRefGoogle Scholar
  31. Rivard C, Pelletier M, Michau N, Razafitianamaharavo A, Bihannic I, Abdelmoula M, Ghanbaja J, Villiéras F (2013) Berthierine-like mineral formation and stability during the interaction of kaolinite with metallic iron at 90°C under anoxic and oxidant conditions. Am Miner 98: xxx–xxx (In Press)Google Scholar
  32. Schlegel ML, Bataillon C, Benhamida K, Blanc C, Menut D, Lacour JL (2008) Metal corrosion and argillite transformation at the water-saturated, high-temperature iron-clay interface: a microscopic-scale study. Appl Geochem 23:2619–3263CrossRefGoogle Scholar
  33. Shaw SA, Peak D, Hendry J (2009) Investigation of acidic dissolution of mixed clays between pH 1.0 and −3.0 using Si and Al X-ray absorption near edge structure. Geochim Cosmochim Acta 73:4151–4165CrossRefGoogle Scholar
  34. Teo BK (1986) EXAFS: basic principles and data analysis. Inorganic chemistry concepts, vol 9. Springer, BerlinCrossRefGoogle Scholar
  35. Van Aken PA, Liebscher B (2002) Quantification of ferrous/ferric ratios in minerals: new evaluation schemes of Fe-L2,3 electron energy-loss near-edge spectra. Phys Chem Miner 29:188–200CrossRefGoogle Scholar
  36. Van der Laan G, Kirkman IW (1992) 2p absorption spectra of 3d transition metal compounds in tetrahedral and octahedral symmetry. J Phys: Condens Matter 4:4189–4204CrossRefGoogle Scholar
  37. Vantelon D, Montarges-Pelletier E, Michot LJ, Briois V, Pelletier M, Thomas F (2003) Iron distribution in the octahedral sheet of dioctahedral smectites. An Fe K-edge X-ray absorption spectroscopy study. Phys Chem Miner 30:44–53CrossRefGoogle Scholar
  38. Wasinger E, de Groot FMF, Hedman B, Hodgson KO, Solomon EI (2003) L-edge X-ray absorption spectroscopy of Non-Heme Iron sites: experimental determination of differential orbital covalency. J Am Chem Soc 125:12894–12906CrossRefGoogle Scholar
  39. Wilke M, Farges F, Petit PE, Brown GE Jr, Martin F (2001) Oxidation state and coordination of Fe in minerals: an Fe K-Xanes spectroscopic study. Am Miner 86:714–730Google Scholar
  40. WWW-MINCRYST (2012) Crystallographic and crystallochemical database for minerals and their structural analogues.

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Camille Rivard
    • 1
    • 2
    • 6
    Email author
  • Emmanuelle Montargès-Pelletier
    • 1
    • 2
  • Delphine Vantelon
    • 3
  • Manuel Pelletier
    • 1
    • 2
  • Chithra Karunakaran
    • 4
  • Laurent J. Michot
    • 1
    • 2
  • Frédéric Villieras
    • 1
    • 2
  • Nicolas Michau
    • 5
  1. 1.Laboratoire Environnement et MinéralurgieCNRSVandœuvre-lès-NancyFrance
  2. 2.Laboratoire Environnement et MinéralurgieUniversité de LorraineVandœuvre-lès-NancyFrance
  3. 3.Synchrotron SoleilGif-sur-YvetteFrance
  4. 4.Canadian Light SourceUniversity of SaskatchewanSaskatoonCanada
  5. 5.Agence nationale pour la gestion des déchets radioactifsANDRAChâtenay-MalabryFrance
  6. 6.European Synchrotron Radiation FacilityGrenobleFrance

Personalised recommendations