Physics and Chemistry of Minerals

, Volume 40, Issue 1, pp 73–80

The PVT equation of state of CaPtO3 post-perovskite

  • Simon A. Hunt
  • Alex Lindsay-Scott
  • Ian G. Wood
  • Michael W. Ammann
  • Takashi Taniguchi
Original Paper


Orthorhombic post-perovskite CaPtO3 is isostructural with post-perovskite MgSiO3, a deep-Earth phase stable only above 100 GPa. Energy-dispersive X-ray diffraction data (to 9.4 GPa and 1,024 K) for CaPtO3 have been combined with published isothermal and isobaric measurements to determine its PVT equation of state (EoS). A third-order Birch–Murnaghan EoS was used, with the volumetric thermal expansion coefficient (at atmospheric pressure) represented by α(T) = α0 + α1(T). The fitted parameters had values: isothermal incompressibility, \( K_{{T_{0} }} \) = 168.4(3) GPa; \( K_{{T_{0} }}^{\prime } \) = 4.48(3) (both at 298 K); \( \partial K_{{T_{0} }} /\partial T \) = −0.032(3) GPa K−1; α0 = 2.32(2) × 10−5 K−1; α1 = 5.7(4) × 10−9 K−2. The volumetric isothermal Anderson–Grüneisen parameter, δT, is 7.6(7) at 298 K. \( \partial K_{{T_{0} }} /\partial T \) for CaPtO3 is similar to that recently reported for CaIrO3, differing significantly from values found at high pressure for MgSiO3 post-perovskite (−0.0085(11) to −0.024 GPa K−1). We also report axialPVT EoS of similar form, the first for any post-perovskite. Fitted to the cubes of the axes, these gave \( \partial K_{{aT_{0} }} /\partial T \) = −0.038(4) GPa K−1; \( \partial K_{{bT_{0} }} /\partial T \) = −0.021(2) GPa K−1; \( \partial K_{{cT_{0} }} /\partial T \) = −0.026(5) GPa K−1, with δT = 8.9(9), 7.4(7) and 4.6(9) for a, b and c, respectively. Although \( K_{{T_{0} }} \) is lowest for the b-axis, its incompressibility is the least temperature dependent.


Post-perovskite Thermal equation of state Axial equations of state Calcium platinate CaPtO3 Anderson–Grüneisen parameter 

Supplementary material

269_2012_548_MOESM1_ESM.pdf (170 kb)
Supplementary material 1 (PDF 169 kb)


  1. Aizawa Y, Yoneda A (2006) P-V–T equation of state of MgSiO3 perovskite and MgO periclase: implication for lower mantle composition. Phys Earth Plan Int 155:87–95CrossRefGoogle Scholar
  2. Angel RJ (2000) Equations of state. In: Hazen RM, Downs RT (eds) Reviews in mineralogy and geochemistry, vol 41. Mineralogical Society of America, WashingtonGoogle Scholar
  3. Angel RJ (2001) EOS-FIT V5.2. Computer program. Crystallography laboratory, Department of Geological Sciences, Virginia Tech, Blacksburg, Virginia, USAGoogle Scholar
  4. Birch F (1978) Finite strain isotherm and velocities for single crystal NaCl at high pressures and 300 degrees K. J Geophys Res 83:1257–1268CrossRefGoogle Scholar
  5. Brown JM (1999) The NaCl pressure standard. J Appl Phys 86(10):5801–5808CrossRefGoogle Scholar
  6. Cahen D, Ibers JA, Mueller MH (1974) Platinum bronzes II crystal structure of CaPt2O4 and Cd0.3Pt3O4. Inorg Chem 13:110–115CrossRefGoogle Scholar
  7. Dobson DP, Hunt SA, Lindsay-Scott A, Wood IG (2011) Towards better analogues for MgSiO3 post-perovskite: NaCoF3 and NaNiF3, two new recoverable fluoride post-perovskites. Phys Earth Plan Int 189:171–175. doi:10.1016/j.pepi.2011.08.010 CrossRefGoogle Scholar
  8. Guignot N, Andrault D, Morard G, Bolfan-Casanova N, Mezouar M (2007) Thermoelastic properties of post-perovskite phase MgSiO3 determined experimentally at core-mantle boundary P-T conditions. Earth Planet Sci Lett 256:162–168CrossRefGoogle Scholar
  9. Inaguma Y, Hasumi K, Yoshida M, Ohba T, Katsumata T (2008) High-pressure synthesis, structure, and characterization of a post-perovskite CaPtO3 with CaIrO3-type structure. Inorg Chem 47:1868–1870CrossRefGoogle Scholar
  10. Katsura T, Yokoshi S, Kawabe K, Shatskiy A, Manthilake AMGM, Zhai S, Fukui H, Hegoda HACI, Yoshino T, Yamazaki D, Matsuzaki T, Yoneda A, Ito E, Sugita M, Tomioka N, Hagiya K, Nozawa A, Funakoshi K (2009) P-V-T relations of MgSiO3 perovskite determined by in situ X-ray diffraction using a large-volume high-pressure apparatus. Geophys Res Lett 36:L01305. doi:10.1029/2008GL035658 CrossRefGoogle Scholar
  11. Komabayashi T, Hirose K, Sugimura E, Sata N, Ohishi Y, Dubrovinsky LS (2008) Simultaneous volume measurements of post-perovskite and perovskite in MgSiO3 and their thermal equations of state. Earth Planet Sci Lett 265:515–524CrossRefGoogle Scholar
  12. Larson AC, Von Dreele RB (1994) General structure analysis system (GSAS). Los Alamos National Laboratory Report LAUR 86-748Google Scholar
  13. Le Bail A, Duroy H, Fourquet JL (1988) Ab initio structure determination of LiSbWO6 by X-ray powder diffraction. Mat Res Bull 23:447–452CrossRefGoogle Scholar
  14. Lindsay-Scott A (2012) The thermoelastic properties of post-perovskite analogue phases. Ph.D. Thesis, University College London.Google Scholar
  15. Lindsay-Scott A, Wood IG, Dobson D, Vočadlo L, Brodholt JP, Crichton W, Hanfland M, Taniguchi T (2010) The isothermal equation of state of CaPtO3 post-perovskite to 40 GPa. Phys Earth Plan Int 162:113–118CrossRefGoogle Scholar
  16. Lindsay-Scott A, Wood IG, Dobson D, Vočadlo L, Brodholt JP, Knight KS, Tucker MG, Taniguchi T (2011) Thermoelastic properties and crystal structure of CaPtO3 post-perovskite from 0 to 9 GPa and from 2 to 973 K. J Appl Cryst 44:999–1016CrossRefGoogle Scholar
  17. Liu W, Whitaker ML, Liu Q, Wang L, Nishiyama N, Wang Y, Kubo A, Duffy TS, Li B (2011) Thermal equation of state of CaIrO3 post-perovskite. Phys Chem Miner 38:407–417CrossRefGoogle Scholar
  18. Murakami M, Hirose K, Kawamora K, Sata N, Ohishi Y (2004) Post perovskite phase transition in MgSiO3. Science 304:855–858CrossRefGoogle Scholar
  19. Oganov AR, Ono S (2004) Theoretical and experimental evidence for a post-perovskite phase of MgSiO3 in earth’s D′′ layer. Nature 430:445–448CrossRefGoogle Scholar
  20. Ohgushi K, Matsushita Y, Miyajima N, Katsuya Y, Tanaka M, Izumi F, Gotou H, Ueda Y, Yagi T (2008) CaPtO3 as a novel post-perovskite oxide. Phys Chem Miner 35:189–195CrossRefGoogle Scholar
  21. Shirako Y, Shi YG, Aimi A, Mori D, Kojitani HK, Yamaura KY, Inaguma Y, Akaogi M (2012) High-pressure stability relations, crystal structures, and physical properties of perovskite and post-perovskite of NaNiF3. J Solid State Chem 191:167–174CrossRefGoogle Scholar
  22. Stackhouse S, Brodholt JP, Wookey J, Kendall J-M, Price GD (2005) The effect of temperature on the seismic anisotropy of the perovskite and post-perovskite polymorphs of MgSiO3. Earth Planet Sci Lett 230:1–10CrossRefGoogle Scholar
  23. Tateno S, Hirose K, Sata N, Ohishi Y (2009) Determination of post-perovskite phase transition boundary up to 4400 K and implications for thermal structure in D’’ layer. Earth Planet Sci Lett 277:130–136CrossRefGoogle Scholar
  24. Tateno S, Hirose K, Sata N, Ohishi Y (2010) Structural distortion of CaSnO3 perovskite under pressure and the quenchable post-perovskite phase as a low-pressure analogue to MgSiO3. Phys Earth Plan Int 181:54–59CrossRefGoogle Scholar
  25. Thompson P, Wood IG (1983) X-ray Rietveld refinement using Debye-Scherrer geometry. J Appl Cryst 16:458–472CrossRefGoogle Scholar
  26. Toby BH (2001) EXPGUI, a graphical user interface for GSAS. J Appl Cryst 34:210–221CrossRefGoogle Scholar
  27. Weidner DJ, Vaughan MT, Wang L, Long H, Li L, Dixon NA, Durham WB (2010) Precise stress measurements with white synchrotron X-rays. Rev Sci Instrum 81:013903CrossRefGoogle Scholar
  28. Wood IG, Vočadlo L, Dobson DP, Price GD, Fortes AD, Cooper FJ, Neale JW, Walker AM, Marshall WG, Tucker MG, Francis DJ, Stone HJ, McCammon CA (2008) Thermoelastic properties of magnesiowüstite, (Mg1-xFex)O: determination of the Anderson–Grüneisen parameter by time-of-flight neutron powder diffraction at simultaneous high pressures and temperatures. J Appl Cryst 41:886–896CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Simon A. Hunt
    • 1
  • Alex Lindsay-Scott
    • 1
  • Ian G. Wood
    • 1
  • Michael W. Ammann
    • 1
  • Takashi Taniguchi
    • 2
  1. 1.Department of Earth SciencesUniversity College LondonLondonUK
  2. 2.National Institute for Materials ScienceTsukuba, IbarakiJapan

Personalised recommendations