Physics and Chemistry of Minerals

, Volume 39, Issue 8, pp 613–626 | Cite as

Crystallographic preferred orientation in wüstite (FeO) through the cubic-to-rhombohedral phase transition

  • P. Kaercher
  • S. Speziale
  • L. Miyagi
  • W. Kanitpanyacharoen
  • H.-R. Wenk
Original paper

Abstract

Magnesiowüstite, (Mg0.08Fe0.88)O, and wüstite, Fe0.94O, were compressed to ~36 GPa at ambient temperature in the diamond anvil cell (DAC) at the Advanced Light Source. X-ray diffraction patterns were taken in situ in radial geometry in order to study the evolution of crystallographic preferred orientation through the cubic-to-rhombohedral phase transition. Under uniaxial stress in the DAC, {100}c planes aligned perpendicular to the compression direction. The {100}c in cubic became {\(\left\{ {10\bar 14} \right\}\)}r in rhombohedral and remained aligned perpendicular to the compression direction. However, the {101}c and {111}c planes in the cubic phase split into {\({10{\bar{1}}4}\)}r and {\({11{\bar{2}}0}\)}r, and (0001)r and {\({10{\bar{1}}1}\)}r, respectively, in the rhombohedral phase. The {\({11{\bar{2}}0}\)}r planes preferentially aligned perpendicular to the compression direction while {\({10{\bar{1}}4}\)}r oriented at a low angle to the compression direction. Similarly, {\({10{\bar{1}}1}\)}r showed a slight preference to align more closely perpendicular to the compression direction than (0001)r. This variant selection may occur because the 〈\({10{\bar{1}}4}\)r and [0001]r directions are the softer of the two sets of directions. The rhombohedral texture distortion may also be due to subsequent deformation. Indeed, polycrystal plasticity simulations indicate that for preferred {\({10{\bar{1}}4}\)}〈\({1{\bar{2}}10}\)r and {\({11{\bar{2}}0}\)}〈\({{\bar{1}}101}\)r slip and slightly less active {\({10{\bar{1}}1}\)}〈\({{\bar{1}}2{\bar{1}}0}\)r slip, the observed texture pattern can be obtained.

Keywords

Wüstite Preferred orientation Diamond anvil cell Phase transition 

Notes

Acknowledgments

Pamela Kaercher is grateful for partial support from the Francis J. Turner Fellowship. We also thank the Carnegie/Department of Energy Alliance Center (CDAC) and the National Science Foundation (EAR-0836402) for financial support and the Advanced Light Source of Lawrence Berkeley National Laboratory for the use of beamline 12.2.2. Samples were provided by Yingwei Fei via Ho-kwang Mao, and Steven Jacobsen. We appreciate assistance with the experiments from Hauke Marquardt, Sebastian Merkel, and Jason Knight. Carlos Tomé developed the viscoplastic self-consistent code used here to determine slip systems. We are appreciative to constructive comments from reviewers.

References

  1. Antonangeli D, Siebert J, Aracne C, Farber D, Bosak A, Hoesch M, Krisch M, Ryerson F, Fiquet G, Badro J (2011) Spin crossover in ferropericlase at high pressure: a seismologically transparent transition? Science 331:64–67CrossRefGoogle Scholar
  2. Badro J, Struzhkin V, Shu J, Hemley R, Mao HK (1999) Magnetism in FeO at megabar pressures from X-ray emission spectroscopy. Phys Rev Lett 83(20):4101–4104CrossRefGoogle Scholar
  3. Badro J, Guillaume F, François G, Rueff JP, Struzhkin V, Vankó G, Monaco G (2003) Iron partitioning in earth’s mantle: toward a deep lower mantle discontinuity. Science 300:789–791CrossRefGoogle Scholar
  4. Bonczar L, Graham E (1982) The pressure and temperature dependence of the elastic constants of polycrystal magnesiowustite. J Geophys Res 87(B2):1061–1078CrossRefGoogle Scholar
  5. Carter N, Heard H (1970) Temperature and rate dependent deformation of halite. Am J Sci 269:193–249CrossRefGoogle Scholar
  6. Cohen R, Mazin I, Isaak D (1997) Magnetic collapse in transition metal oxides at high pressure: implications for the earth. Science 275(654). doi:10.1126/science.275.5300.654
  7. Crowhurst J, Brown J, Goncharov A, Jacobsen S (2008) Elasticity of (Mg, Fe)O through the spin transition of iron in the lower mantle. Science 319:451–453CrossRefGoogle Scholar
  8. Ding Y, Xu J, Prewitt C, Hemley R, Mao HK, Cowan J, Zhang J, Qian J, Vogel S, Lokshin K, Zhao Y (2005) Variable pressure-temperature neutron diffraction of wüstite (Fe1-x O): absence of long-range magnetic order to 20 GPa. Appl Phys Lett 86:052505Google Scholar
  9. Dubrovinsky L, Dubrovinskaia N, Saxena S, LiBehan T (2000) X-ray diffraction under non-hydrostatic conditions in experiments with diamond anvil cell: wustite (FeO) as an example. Mat Sci Eng A288:187–190Google Scholar
  10. Duffy T, Hemley R, Mao HK (1995) Equation of state and shear strength at multimegabar pressures: magnesium oxide to 227 GPa. Phys Rev Lett 74(8):1371–1374CrossRefGoogle Scholar
  11. Fei Y (1996) Crystal chemistry of FeO at high pressure and temperature. Geochem Soc 5:243–254Google Scholar
  12. Fei Y, Mao HK (1994) In situ determination of the NiAs phase of FeO at high pressure and temperature. Science 266(5191):1678–1680CrossRefGoogle Scholar
  13. Fei Y, Zhang L, Corgne A, Watson H, Ricolleau A, Meng Y, Prakapenka V (2007) Spin transition and equations of state of (Mg, Fe)O solid solutions. Geophys Res Lett. doi:10.1029/2007GL030712 Google Scholar
  14. Foitzik A, Skrotzki W, Haasen P (1989) Correlation between microstructure, dislocation dissociation and plastic anisotropy in ionic crystals. Mat Sci Eng A113:399–407Google Scholar
  15. Gramsch S, Cohen R, Savrasov S (2003) Structure, metal-insulator transitions, and magnetic properties of FeO at high pressures. Am Mineral 88:257–261Google Scholar
  16. Hammersley A, Svensson S, Hanfland M, Fitch A, Häusermann D (1996) Two-dimensional detector software: from real detector to idealised image two-theta scan. High Press Res 14:235–248CrossRefGoogle Scholar
  17. Hazen R (1981) Systematic variation of bulk modulus of wüstite with stoichiometry. Year Book, Carnegie Institute of Washington, Washington, vol 80, pp 277–280Google Scholar
  18. Irifune T, Shinmei T, McCammon C, Miyajima N, Rubie D, Frost D (2010) Iron partitioning and density changes in pyrolite in Earth’s lower mantle. Science 327:193–195CrossRefGoogle Scholar
  19. Jackson I, Ringwood A (1981) High-pressure polymorphism of the iron oxides. Geophys J R Astron Soc 64:767–783CrossRefGoogle Scholar
  20. Jackson I, Khanna S, Revcolevschi A, Berthon J (1990) Elasticity, shear-mode softening and high-pressure polymorphism of wustite (Fe1-xO). J Geophys Res 21:671–685Google Scholar
  21. Jacobsen S, Spetzler H, Reichmann H, Smyth J (2004) Shear waves in the diamond-anvil cell reveal pressure-induced instability in (Mg, Fe)O. Proc Natl Acad Sci USA 101(16):5867–5871CrossRefGoogle Scholar
  22. Jeanloz R, Sato-Sorensen Y (1986) Hydrostatic compression of Fe1-xO wüstite. J Geophys Res 91:4665–4672CrossRefGoogle Scholar
  23. Jeanloz R, Thompson A (1983) Phase transitions and mantle discontinuities. Rev Geophys 21:51–74CrossRefGoogle Scholar
  24. Kantor A, Jacobsen S, Kantor I, Dubrovinsky L, McCammon C, Reichmann H, Goncharenko I (2004a) Pressure-induced magnetization in FeO: evidence from elasticity and Mössbauer spectroscopy. Phys Rev Lett. doi:10.1103/93.215502 Google Scholar
  25. Kantor I, McCammon C, Dubrovinsky L (2004b) Mössbauer spectroscopic study of pressure-induced magnetisation in wüstite (FeO). J Alloys Compd 376:5–8CrossRefGoogle Scholar
  26. Kantor I, Dubrovinsky L, McCammon C, Kantor A, Pascarelli S, Aquilanti G, Crichton W, Mattesini M, Ahuja R, Almeida J, Urusov V (2006) Pressure-induced phase transition in Mg0.8Fe0.2O ferropericlase. Phys Chem Miner 33:35–44CrossRefGoogle Scholar
  27. Kantor I, Dubrovinsky L, McCammon C, Dubrvinskaia N, Goncharenko I, Kantor A, Kuznetsov A, Crichton W (2007) FeO and MnO high-pressure phase diagrams: relations between structural and magnetic properties. Phase Transitions 80:1151–1163CrossRefGoogle Scholar
  28. Kirby S, Kronenberg A (1987) Rheology of the lithosphere; selected topics. Rev Geophys 25(6):1219–1244CrossRefGoogle Scholar
  29. Koči L, Vitos L, Ahuja R (2007) Ab initio calculations of the elastic properties of ferropericlase Mg1-xFexO (x < 0.25). Phys Earth Planet Interiors 164:177–185CrossRefGoogle Scholar
  30. Kocks U, Tomé C, Wenk HR (1998) Texture and anisotropy: preferred orientations in polycrystals and their effect on materials properties. Cambridge University Press, Cambridge, pp 564–567Google Scholar
  31. Kondo T, Ohtani E, Hirao N, Yagi T, Kikegawa T (2004) Phase transitions of (Mg, Fe)O at megabar pressures. Phys Earth Planet Interiors 143–144:201–213CrossRefGoogle Scholar
  32. Lebensohn R, Tomé C (1994) A self-consistent viscoplastic model: prediction of rolling textures of anisotropic polycrystals. Mat Sci Eng A175:71–82Google Scholar
  33. Lin JF, Heinz D, Mao HK, Hemley R, Devine J, Li J, Shen G (2003) Stability of magnesiowüstite in Earth’s lower mantle. Proc Natl Acad Sci USA 100:4405–4408CrossRefGoogle Scholar
  34. Lin JF, Struzhkin V, Jacobsen S, Hu M, Chow P, Kung J, Liu H, Mao HK, Hemley R (2005a) Spin transition of iron in magnesiowustite in the Earth’s lower mantle. Nature 436:377–380CrossRefGoogle Scholar
  35. Lin JF, Struzhkin V, Jacobsen S, Shen G, Prakapenka V, Mao HK, Hemley R (2005b) X-ray emission spectroscopy with a laser-heated diamond anvil cell: a new experimental probe of the spin state of iron in the Earth’s interior. J Synchrotron Radiat 12:637–641CrossRefGoogle Scholar
  36. Lin JF, Wenk HR, Voltolini M, Speziale S, Shu J, Duffy T (2009) Deformation of lower-mantle ferropericlase (Mg, Fe)O across the electronic spin transition. Phys Chem Miner 36(10):585–592CrossRefGoogle Scholar
  37. Lonardelli I, Gey N, Wenk HR, Humbert M, Vogel S, Lutterotti L (2007) In situ observation of texture evolution during α → β and β → α phase transformations in titanium alloys investigated by neutron diffraction. Acta Mater 55:5718–5727CrossRefGoogle Scholar
  38. Lutterotti L, Scardi P (1990) Simultaneous structure and size-strain refinement by the Rietveld method. J Appl Phys 23:246–252Google Scholar
  39. Lutterotti L, Matthies S, Wenk HR (1997) Combined texture and structure analysis of deformed limestone from time-of-flight neutron diffraction spectra. J Appl Phys 81(2):594–600CrossRefGoogle Scholar
  40. Mao HK, Shu J, Fei Y, Hu J, Hemley R (1996) The wustite enigma. Phys Earth Planet Interiors 96:135–145CrossRefGoogle Scholar
  41. Mao W, Shu J, Fei Y, Hu J, Hemley R, Mao HK (2002) Displacive transition in magnesiowustite. J Phys: Condens Matter 14:11349–11354CrossRefGoogle Scholar
  42. Mao Z, Lin JF, Liu J, Prakapenka V (2011) Thermal equation of state of lower-mantle ferropericlase across the spin crossover. Geophys Res Lett 38:L23308CrossRefGoogle Scholar
  43. Marquardt H, Speziale S, Reichmann H, Frost D, Schilling F, Garnero E (2009) Elastic shear anisotropy of ferropericlase in earth’s lower mantle. Science 324. doi:10.1126/science.1169365
  44. Matthies S, Vinel G (1982) An example demonstrating a new reproduction method of the ODF of texturized samples from reduced pole figures. Phys Status Solidi B 112:K115–K120CrossRefGoogle Scholar
  45. Matthies S, Priesmeyer H, Daymond M (2001) On the diffractive determination of single-crystal elastic constants using polycrystalline samples. J Appl Cryst 34:585–601CrossRefGoogle Scholar
  46. Mazin I, Fei Y, Downs R, Cohen R (1998) Possible polytypism in FeO at high pressures. Am Mineral 83:451–457Google Scholar
  47. Meade C, Jeanloz R (1988) Yield strength of MgO to 40 GPa. J Geophys Res 93:3261–3269CrossRefGoogle Scholar
  48. Menendez-Proupin E, Singh A (2007) Ab initio calculations of elastic properties of compressed Pt. Phys Rev B. doi:10.1103/76.054117 Google Scholar
  49. Merkel S, Wenk HR, Shu J, Shen G, Gillet P, Mao HK, Hemley R (2002) Deformation of polycrystalline MgO at pressures of the lower mantle. J Geophys Res. doi:10.1029/2001JB000920 Google Scholar
  50. Merkel S, Tomé C, Wenk HR (2009) Modeling analysis of the influence of plasticity on high pressure deformation of hcp-Co. Phys Rev B. doi:10.1103/79.064110 Google Scholar
  51. Miyagi L, Kunz M, Knight J, Nasiatka J, Voltolini M, Wenk HR (2008) In situ phase transformation and deformation of iron at high pressure and temperature. J Appl Phys. doi:10.1063/1.3008035
  52. Murakami M, Hirose K, Ono S, Tsuchiya T, Isshiki M, Watanuki T (2004) High pressure and high temperature phase transitions of FeO. Phys Earth Planet Interiors 146:273–282CrossRefGoogle Scholar
  53. Ohta K, Cohen R, Hirose K, Haule K, Shimizu K, Ohishi Y (2012) Experimental and theoretical evidence for pressure-induced metallization in FeO with rock-salt-type structure. Phys Rev Lett 108:026403CrossRefGoogle Scholar
  54. Ozawa H, Takahashi F, Hirose K, Ohishi Y, Hirao N (2011) Phase transition of FeO and stratification in Earth’s outer core. Science 334:792–794. doi:10.1126/science.1208265 Google Scholar
  55. Pasternak M, Taylor R, Jeanloz R, Li X, Nguyen J, McCammon C (1997) High pressure collapse of magnetism in Fe0.94O: Mössbauer spectroscopy beyond 100 GPa. Phys Rev Lett 79(25):5046–5049CrossRefGoogle Scholar
  56. Paterson M, Weaver C (1970) Deformation of polycrystalline MgO under pressure. J Am Ceram Soc 53:463–471CrossRefGoogle Scholar
  57. Rietveld H (1969) A profile refinement method for nuclear and magnetic structures. J Appl Cryst 2:65–71CrossRefGoogle Scholar
  58. Shim SH, Duffy T, Kenichi T (2002) Equation of state of gold and its application to the phase boundaries near 660 km depth in Earth’s mantle. Earth Planet Sci Lett 203:729–739CrossRefGoogle Scholar
  59. Shu J, Mao HK, Hu J, Fei Y, Hemley R (1998) Single-crystal X-ray diffraction of wustite to 30 GPa hydrostatic pressure. N Jb Miner Abh 172:309–323Google Scholar
  60. Singh A, Mao HK, Shu J, Hemley R (1998) Estimation of single-crystal elastic moduli from polycrystalline X-ray diffraction at high pressure: application to FeO and iron. Phys Rev Lett 80(10):2157–2160CrossRefGoogle Scholar
  61. Skrotzki W, Haasen P (1981) Hardening mechanisms of ionic crystals on (110) and (100) slip planes. J Phys (Paris) 42(6):3119–3148Google Scholar
  62. Speziale S, Milner A, Lee V, Clark S, Pasternak M, Jeanloz R (2005) Iron spin transition in earth’s mantle. Proc Natl Acad Sci USA 102(50):17918–17922CrossRefGoogle Scholar
  63. Speziale S, Lee V, Clark S, Lin J, Pasternak M, Jeanloz R (2007) Effects of Fe spin transition on the elasticity of (Mg, Fe)O magnesiowüstite and implications for the seismological properties of the Earth’s lower mantle. J Geophys Res. doi:10.1029/2006JB004730 Google Scholar
  64. Tommaseo C, Devine J, Merkel S, Speziale S, Wenk HR (2006) Texture development and elastic stresses in magnesiowustite at high pressure. Phys Chem Miner 33:84–97CrossRefGoogle Scholar
  65. Wenk HR, Canova G, Molinari A, Mecking H (1989) Texture development in halite: comparison of taylor model and self-consistent theory. Acta Metall Mater 37(7):2017–2029CrossRefGoogle Scholar
  66. Wenk HR, Matthies S, Donovan J, Chateigner D (1998) BEARTEX: a Windows-based program system for quantitative texture analysis. J Appl Cryst 31:262–269CrossRefGoogle Scholar
  67. Wenk HR, Lonardelli I, Merkel S, Miyagi L, Pehl J, Speziale S, Tommaseo C (2006) Deformation textures produced in diamond anvil experiments, analyzed in radial diffraction geometry. J Phys: Condens Matter 18:S933–S947CrossRefGoogle Scholar
  68. Wenk HR, Cottaar S, Tomé C, McNamara A, Romanowicz B (2011) Deformation of the lowermost mantle: from polycrystal plasticity to seismic anisotropy. Earth Planet Sci Lett 306:33–45CrossRefGoogle Scholar
  69. Yagi T, Suzuki T, Akimoto S-I (1985) Static compression of wustite (Fe0.98O) to 120 GPa. J Geophys Res 90(B10):8784–8788CrossRefGoogle Scholar
  70. Zhuravlev K, Jackson J, Wolf A, Wicks J, Yan J, Clark S (2010) Isothermal compression behavior of (Mg, Fe)O using neon as a pressure medium. Phys Chem Miner 37:465–474CrossRefGoogle Scholar
  71. Zou G, Mao HK, Bell P, Virgo D (1979–1980). High pressure experiments on the iron oxide wustite (Fe1-xO). Year Book, Carnegie Institute of Washington, Washington, vol 39, pp 374–376Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • P. Kaercher
    • 1
  • S. Speziale
    • 2
  • L. Miyagi
    • 3
  • W. Kanitpanyacharoen
    • 1
  • H.-R. Wenk
    • 1
  1. 1.Department of Earth and Planetary ScienceUniversity of CaliforniaBerkeleyUSA
  2. 2.Helmholtz CenterGFZ German Research Centre for GeosciencesPotsdamGermany
  3. 3.Department of Geology and GeophysicsUniversity of UtahSalt Lake CityUSA

Personalised recommendations