Physics and Chemistry of Minerals

, Volume 39, Issue 4, pp 311–318 | Cite as

Thermal behavior of almandine at temperatures up to 1,200°C in hydrogen

  • Claudia Aparicio
  • Jan FilipEmail author
  • Henrik Skogby
  • Zdenek Marusak
  • Miroslav Mashlan
  • Radek Zboril
Original Paper


The thermally induced reductive decomposition of a natural near end-member almandine [VIII(Fe2.85Mg0.11Ca0.05Mn0.02)VI(Al1.99)IV(Si2.99)O12] and possible hydrogen diffusion into its structure have been carried out at temperatures up to 1,200°C, monitored by simultaneous thermogravimetric analysis and differential scanning calorimetry (DSC), infrared and 57Fe Mössbauer spectroscopy and X-ray powder diffraction. Below 1,000°C, evidence for hydrogen diffusion into almandine structure was not observed. At temperatures above 1,000°C, reductive decomposition sets in, as displayed by a sharp endothermic peak at 1,055°C on the DSC curve accompanied by a total mass loss of 3.51%. We observe the following decomposition mechanism: almandine + hydrogen → α-Fe + cristobalite + hercynite + water. At higher temperatures, fayalite and sekaninaite are formed by consecutive reaction of α-Fe with cristobalite and water, and cristobalite with hercynite, respectively. The metallic α-Fe phase forms spherical and isolated particles (~1 μm).


Fe-bearing garnet Almandine Thermal treatment Hydrogen diffusion Reductive decomposition Iron particles 



This work has been supported by research projects of the Academy of Sciences of the Czech Republic (grant no. KAN115600801) and the Ministry of Education, Youth and Sports of the Czech Republic (grant no. MSM6198959218; and the Operational Program Research and Development for Innovations—European Regional Development Fund, project no. CZ.1.05/2.1.00/03.0058). Part of this work has been done during a stay of JF at the Department of Mineralogy, Swedish Museum of Natural History, Stockholm (financed by the European Community—Research Infrastructure Action under the FP6 Program within SYNTHESYS; Project SE-TAF-4065). We wish to thank R. Škoda for EMPA measurements, M. Heřmánek, K Šafářová and J. Ševčíková for technical assistance and J. Tuček for language corrections. Samples for this study were kindly provided by the Moravian Museum in Brno, Czech Republic.

Supplementary material

269_2012_488_MOESM1_ESM.doc (1.6 mb)
Supplementary material 1 (DOC 1596 kb)


  1. Anovitz L, Essene E, Metz G, Bohlen S, Westrum E, Hemingway B (1993) Heat capacity and phase equilibria of almandine, Fe3Al2Si3O12. Geochim Cosmochim Ac 57:4191–4204CrossRefGoogle Scholar
  2. Barcova K, Mashlan M, Zboril R, Martinec P, Kula P (2001) Thermal decomposition of almandine garnet: Mössbauer study. Czech J Phys 51:749–754CrossRefGoogle Scholar
  3. Beran A, Libowitzky E (2006) Water in natural mantle minerals II: olivine, garnet and accessory minerals. Rev Mineral Geochem 62:169–191CrossRefGoogle Scholar
  4. Carbonin S, Russo U, Della Giusta A (1996) Cation distribution in some natural spinels from X-ray diffraction and Mössbauer spectroscopy. Mineral Mag 60:355–368CrossRefGoogle Scholar
  5. Chang LLY (2002) Industrial mineralogy: materials, processes and uses, 1st edn. Prentice Hall, Upper Saddle River, New JerseyGoogle Scholar
  6. de Vries M, Grey I, Fitz Gerald J (2007) Crystallographic control in ilmenite reduction. Metall Mater Trans B 38:267–277CrossRefGoogle Scholar
  7. Deer WA, Howie RA, Zussman J (1997) Rock-forming minerals, vol. 1A: orthosilicates, 2nd edn. Geological Society of London, LondonGoogle Scholar
  8. Dyar M, Sklute E, Menzies O, Bland P, Lindsley D, Glotch T, Lane M, Schaffer M, Wopenka B, Klima R, Bishop J, Hiroi T, Pieters C, Sunshine J (2009) Spectroscopic characteristics of synthetic olivine: an integrated multi-wavelength and multi-technique approach. Am Mineral 94:883–898CrossRefGoogle Scholar
  9. Frost DJ, McCammon CA (2008) The redox state of Earth’s mantle. Annu Rev Earth Pl Sc 36:389–420CrossRefGoogle Scholar
  10. Geiger CA (2004) Spectroscopic investigations relating to the structural, crystal-chemical and lattice-dynamic properties of (Fe2+, Mn2+, Mg, Ca)3Al2Si3O12 garnet: A review and analysis. In: Beran A, Libowitzky E (eds) EMU notes in mineralogy, vol 6. Eötvös University Press, Budapest, pp 589–645Google Scholar
  11. Grapes R (2011) Pyrometamorphism, 2nd edn. Springer, BerlinCrossRefGoogle Scholar
  12. Hapke B (2001) Space weathering from Mercury to the asteroid belt. J Geophys Res 106:10039–10073CrossRefGoogle Scholar
  13. Johnson EA (2006) Water in nominally anhydrous crustal minerals: speciation, concentration, and geologic significance. Rev Mineral Geochem 62:117–154CrossRefGoogle Scholar
  14. Keesmann I, Matthes S, Schreyer W, Seifert F (1971) Stability of almandine in the system FeO–(Fe2O3)–Al2O3–SiO2–(H2O) at elevated pressures. Contrib Mineral Petr 31:132–144CrossRefGoogle Scholar
  15. Libowitzky E, Rossman GR (1997) An IR absorption calibration for water in minerals. Am Mineral 82:1111–1115Google Scholar
  16. Liu S, Zeng Y, Jiang D (2009) Fabrication and characterization of cordierite-bonded porous SiC ceramics. Ceram Int 35:597–602CrossRefGoogle Scholar
  17. Mašláň M, Šindelář Z, Martinec P, Chmielová M, Kholmetskii A (1997) Mössbauer study of phase transition caused by oxidation in the temperature region from 20 to 1000°C in almandine garnets. Czech J Phys 47:571–574CrossRefGoogle Scholar
  18. Pouchou JL, Pichoir F (1985) “PAP” procedure for improved quantitative microanalysis. Microbeam Anal 20:104–106Google Scholar
  19. Ravi BG, Guo XZ, Yan QY, Gambino RJ, Sampath S, Parise JB (2007) Phase evolution and magnetic properties of Al substituted yttrium iron garnet nanopowders and plasma-sprayed coatings. Surf Coat Tech 201:7597–7605CrossRefGoogle Scholar
  20. Rossman GR (1996) Studies of OH in nominally anhydrous minerals. Phys Chem Miner 23:299–304CrossRefGoogle Scholar
  21. Schairer JF, Yagi K (1952) The system FeO–Al2O3–SiO2. Am J Sci Bowen 2:471–512Google Scholar
  22. Stevens J, Khasanov A, Miller J, Pollak H, Li Z (eds) (1998) Mössbauer mineral handbook, Mössbauer Effect Data Centre (MEDC). Baltimore Press, AshevilleGoogle Scholar
  23. Sundvall R, Skogby H, Stalder R (2009) Dehydration-hydration mechanisms in synthetic Fe-poor diopside. Eur J Mineral 21:17–26CrossRefGoogle Scholar
  24. Ternes T, Meisel W, Griesbach P, Hanžel D, Gütlich P (1991) AES and CEMS analysis of the formation of layers on Si steel under thermal treatment in a flux of H2/water vapor. Fresenius J Anal Chem 341:79–82CrossRefGoogle Scholar
  25. Thiéblot L, Roux J, Richet P (1998) High-temperature thermal expansion and decomposition of garnets. Eur J Mineral 10:7–15Google Scholar
  26. Zang Q, Enami M, Suwa K (1993) Aluminium orthopyroxene in pyrometamorphosed garnet megacrysts from Liaoning and Shandong provinces, northeast China. Eur J Mineral 5:153–164Google Scholar
  27. Zboril R, Mashlan M, Barcova K, Vujtek M (2002) Thermally induced solid-state syntheses of γ-Fe2O3 nanoparticles and their transformation to α-Fe2O3 via ε-Fe2O3. Hyperfine Interact 139(140):597–606CrossRefGoogle Scholar
  28. Zboril R, Mashlan M, Barcova K, Walla J, Ferrow E, Martinec P (2003) Thermal behavior of pyrope at 1000 and 1100°C: mechanism of Fe2+ oxidation and decomposition model. Phys Chem Miner 30:620–627CrossRefGoogle Scholar
  29. Zboril R, Mashlan M, Machala L, Walla J, Barcova K, Martinec P (2004) Characterization and thermal behavior of garnets from almandine-pyrope series at 1200°C. Hyperfine Interact 156(157):403–410CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Claudia Aparicio
    • 1
  • Jan Filip
    • 1
    Email author
  • Henrik Skogby
    • 2
  • Zdenek Marusak
    • 1
  • Miroslav Mashlan
    • 1
  • Radek Zboril
    • 1
  1. 1.Regional Centre of Advanced Technologies and Materials, Departments of Experimental Physics and Physical Chemistry, Faculty of SciencePalacký UniversityOlomoucCzech Republic
  2. 2.Department of MineralogySwedish Museum of Natural HistoryStockholmSweden

Personalised recommendations