In situ observation of a garnet/perovskite transition in CaGeO3

  • Shigeaki OnoEmail author
  • Takumi Kikegawa
  • Yuji Higo
Original Paper


We used an in situ measurement method to investigate the phase transition of CaGeO3 polymorphs under high pressures and temperatures. A multi-anvil high-pressure apparatus combined with intense synchrotron X-ray radiation was used. The transition boundary between a garnet and a perovskite phase at T = 900–1,650 K and P = 3–8 GPa was determined as occurring at P (GPa) = 9.0−0.0023 × T (K). The transition pressure determined in our study is in general agreement with that observed in previous high-pressure experiments. The slope, dP/dT, of the transition determined in our study is consistent with that calculated from calorimetry data.


Calcium germinate Phase transition Garnet Perovskite 



The authors thank A. Suzuki, K. Mibe, and T. Kawamoto for their help in carrying out the experiments. The synchrotron radiation experiments were performed at the NE7A, KEK (Proposal No. 2009G508) and BL04B1, SPring-8 (Proposal No. 2008A1090). This work was partially supported by Grants-in-Aid for Scientific Research from JSPS and the Earthquake Research Institute cooperative research program, Japan.


  1. Andrault D, Poirier JP (1991) Evolution of the distortion of perovskites under pressure: an EXAFS study of BaZrO3, SrZrO3 and CaGeO3. Phys Chem Mineral 18:91–105CrossRefGoogle Scholar
  2. Andrault D, Itie JP, Farges F (1996) High-temperature structural study of germinate perovskite and pyroxenoids. Am Mineral 81:822–832Google Scholar
  3. Chaplin TD, Ross NL, Reynard B (2000) A high-temperature and high-pressure Raman spectroscopic study of CaGeO3 garnet. Phys Chem Mineral 27:213–219CrossRefGoogle Scholar
  4. Dorogokupets PI, Dewaele A (2007) Equations of state of MgO, Au, Pt, NaCl-B1, and NaCl-B2: internally consistent high-temperature pressure scales. High Press Res 27:431–446CrossRefGoogle Scholar
  5. Durben DJ, Wolf GH, McMillan PF (1991) Raman scattering study of the high-temperature vibrational properties and stability of CaGeO3 perovskite. Phys Chem Mineral 18:215–223CrossRefGoogle Scholar
  6. Fei Y, Ricolleau A, Frank M, Mibe K, Shen G, Prakapenka V (2007) Toward an internally consistent pressure scale. Proc Natl Acad Sci 104:9182–9186CrossRefGoogle Scholar
  7. Holmes NC, Moriarty JA, Gathers GR, Nellis WJ (1989) The equation of state of platinum to 660 GPa (6.6 Mbar). J Appl Phys 66:2962–2967CrossRefGoogle Scholar
  8. Katsura T, Yamada H, Nishikawa O, Song M, Kubo A, Shinmei T, Yokoshi S, Yoshino T, Walter MJ, Ito E (2004) Olivine-wadsleyite transition in the system (Mg, Fe) 2SiO4. J Geophys Res 109:B02209CrossRefGoogle Scholar
  9. Liebermann RC, Jones LEA, Ringwood AE (1977) Elasticity of aluminate, titanate, stannate and germinate compounds with the perovskite structure. Phys Earth Planet Inter 14:165–178CrossRefGoogle Scholar
  10. Liu W, Li B (2007) Compressional and shear wave velocities of polycrystalline CaGeO3 perovskite to 10 GPa. Phys Rev B 75:024107CrossRefGoogle Scholar
  11. Liu X, Wang Y, Liebermann RC, Maniar PD, Navrotsky A (1991) Phase transition in CaGeO3 perovskite: evidence from X-ray powder diffraction, thermal expansion and heat capacity. Phys Chem Mineral 18:224–230CrossRefGoogle Scholar
  12. Liu W, Kung J, Wang L, Li B (2008) Thermal equation of state of CaGeO3 perovskite. Am Mineral 93:745–750CrossRefGoogle Scholar
  13. Lu R, Hofmeister AM (1994) Infrared spectroscopy of CaGeO3 perovskite to 24 GPa and thermodynamic implications. Phys Chem Mineral 21:78–84CrossRefGoogle Scholar
  14. McMillan P, Ross N (1988) The Raman spectra of several orthorhombic calcium oxide perovskite. Phys Chem Mineral 16:21–28CrossRefGoogle Scholar
  15. Meng Y, Weidner DJ, Gwanmesia GD, Liebermann RC, Vaughan MT, Wang Y, Leinenweber K, Pacalo RE, Yeganen-Haeri A, Zhao Y (1993) In situ high P-T X-ray diffraction studies on three polymorphs (α, β, γ) of Mg2SiO4. J Geophys Res 98:22199–22207CrossRefGoogle Scholar
  16. Nakatsuka A, Chaya H, Yoshida A (2005) Crystal structure of single crystal CaGeO3 tetragonal garnet synthesized at 3 GPa and 1,000°C. Am Mineral 90:755–757CrossRefGoogle Scholar
  17. Ono S, Katsura T, Ito E, Kanzaki M, Yoneda A, Walter MJ, Urakawa S, Utsumi W, Funakoshi K (2001) In situ observation of ilmenite-perovskite phase transition in MgSiO3 using synchrotron radiation. Geophys Res Lett 28:835–838CrossRefGoogle Scholar
  18. Ono S, Funakoshi K, Nakajima Y, Tange Y, Katsura T (2004) Phase transition of zircon at high P-T conditions. Contrib Mineral Petrol 147:505–509CrossRefGoogle Scholar
  19. Ono S, Nakajima Y, Funakoshi K (2007) In situ observations of decomposition of kyanite at high pressures and high temperatures. Am Mineral 92:1624–1629CrossRefGoogle Scholar
  20. Ono S, Brodholt JP, Price GD (2011) Elastic, thermal and structural properties of platinum. J Phys Chem Solid 72:169–175CrossRefGoogle Scholar
  21. Prewitt CT, Sleight AW (1969) Garnet-like structure of high pressure cadmium germinate and calcium germinate. Science 163:386–387CrossRefGoogle Scholar
  22. Ringwood AE, Major A (1967) Some high-pressure transformations of geophysical significance. Earth Planet Sci Lett 2:106–110CrossRefGoogle Scholar
  23. Ringwood AE, Seabrook M (1963) High-pressure phase transformation in germinates pyroxenes and related compounds. J Geophys Res 68:4601–4609CrossRefGoogle Scholar
  24. Ross NL, Angel RJ (1999) Compression of CaTiO3 and CaGeO3 perovskite. Am Mineral 84:277–281Google Scholar
  25. Ross NL, Akaogi M, Navrotsky A, Susaki J, McMillan P (1986) Phase transitions among the CaGeO3 polymorphs (wollastonite, garnet, and perovskite structures): Studies by high-pressure synthesis, high-temperature calorimetry, and vibrational spectroscopy and calculation. J Geophys Res 91:4685–4696CrossRefGoogle Scholar
  26. Sasaki S, Prewitt CT, Liebermann RC (1983) The crystal structure of CaGeO3 perovskite and the crystal chemistry of GdFeO3-type perovskite. Am Mineral 68:1189–1198Google Scholar
  27. Sun T, Umemoto K, Wu Z, Zheng J, Wentzcovitch RM (2008) Lattice dynamics and thermal equation of state of platinum. Phys Rev B 78:024304CrossRefGoogle Scholar
  28. Susaki J, Akaogi M, Akimoto S, Shimomura O (1985) Garnet-perovskite transition in CaGeO3: in situ X-ray measurements using synchrotron radiation. Geophys Res Lett 12:729–732CrossRefGoogle Scholar
  29. Zhang J, Li B, Utsumi W, Liebermann RC (1996) In situ X-ray observations of the coesite-stishovite transition: reversed phase boundary and kinetics. Phys Chem Minerals 23:1–10CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Institute for Research on Earth EvolutionJapan Agency for Marine-Earth Science and TechnologyYokosuka-shi, KanagawaJapan
  2. 2.Earthquake Research InstituteUniversity of TokyoBunkyo-ku, TokyoJapan
  3. 3.High Energy Acceleration Research OrganizationTsukubaJapan
  4. 4.Japan Synchrotron Radiation Research InstituteSayo-cho, Sayo-gun, HyogoJapan

Personalised recommendations