Physics and Chemistry of Minerals

, Volume 38, Issue 9, pp 665–678 | Cite as

The enigma of post-perovskite anisotropy: deformation versus transformation textures

  • Lowell MiyagiEmail author
  • Waruntorn Kanitpanyacharoen
  • Stephen Stackhouse
  • Burkhard Militzer
  • Hans-Rudolf Wenk
Original Paper


The D′′ region that lies just above the core mantle boundary exhibits complex anisotropy that this is likely due to preferred orientation (texturing) of the constituent minerals. (Mg,Fe)SiO3 post-perovskite is widely thought to be the major mineral phase of the D′′. Texture development has been studied in various post-perovskite phases (MgSiO3, MgGeO3, and CaIrO3), and different results were obtained. To clarify this controversy, we report on transformation and deformation textures in MgGeO3 post-perovskite synthesized and deformed at room temperature in the diamond anvil cell. Transformed from the enstatite phase, MgGeO3 post-perovskite exhibits a transformation texture characterized by (100) planes at high angles to the direction of compression. Upon subsequent deformation, this texture changes and (001) lattice planes become oriented nearly perpendicular to compression, consistent with dominant (001)[100] slip. When MgGeO3 post-perovskite is synthesized from the perovskite phase, a different transformation texture is observed. This texture has (001) planes at high angle to compression and becomes slightly stronger upon compression. We also find that the yield strength of MgGeO3 post-perovskite is dependent on grain size and texture. Finer-grained samples exhibit higher yield strength and are harder to induce plastic deformation. Strong textures also affect the yield strength and can result in higher differential stresses. The inferred dominant (001) slip for pPv is significant for geophysics, because, when applied to geodynamic convection models, it predicts the observed anisotropies of S-waves as well as an anti-correlation between P- and S-waves.


Post-perovskite MgGeO3 Texture Anisotropy Deformation Transformation D″ 



This work was performed at HPCAT (Sector 16), Advanced Photon Source (APS), Argonne National Laboratory. HPCAT is supported by CIW, CDAC, UNLV, and LLNL through funding from DOE-NNSA, DOE-BES, and NSF. APS is supported by DOE-BES, under Contract No. DE-AC02-06CH11357. We would like to thank T. S. Duffy at Princeton University for kindly providing the starting material. L.M. acknowledges support of the Bateman Fellowship at Yale University. S.S. acknowledges support from NSF, CDAC, and UC Berkeley’s laboratory fee grant. H.R.W acknowledges support from CDAC and NSF Grant No. EAR0836402 and EAR0757608. We appreciate the help of Y. Meng at HPCAT.


  1. Ammann MW, Brodholt JP, Wookey J, Dobson DP (2010) First-principles constraints on diffusion in lower-mantle minerals and a weak D′′ layer. Nature 465:462–465CrossRefGoogle Scholar
  2. Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50:7953–17979CrossRefGoogle Scholar
  3. Bunge H-J (1982) Texture analysis in materials science—mathematical methods. Butterworths, LondonGoogle Scholar
  4. Carrez P, Ferré D, Cordier P (2007a) Peierls-Nabarro model for dislocations in MgSiO3 post-perovskite calculated at 120 GPa from first principles. Philos Mag 87:3229–3247CrossRefGoogle Scholar
  5. Carrez P, Ferre D, Cordier P (2007b) Implications for plastic flow in the deep mantle from modelling dislocations in MgSiO3 minerals. Nature 446:68–70CrossRefGoogle Scholar
  6. Coble RL (1963) A model for boundary diffusion controlled creep in polycrystalline materials. J Appl Phys 34:1679–1682CrossRefGoogle Scholar
  7. Dupas-Bruzek C, Tingle TN, Green HW II, Doukhan N, Doukhan J (1998) The rheology of olivine and spinel magnesium germanate (Mg2GeO4): TEM study of the defect microstructures. Phys Chem Miner 25:501–514CrossRefGoogle Scholar
  8. Garnero EJ, McNamara AK (2008) Structure and dynamics of Earth’s lower mantle. Science 320:626–628CrossRefGoogle Scholar
  9. Hammersley AP (1997) FIT2D: an introduction and overview. ESRF Internal Report, ESRF97HA02TGoogle Scholar
  10. Helmberger D, Lay T, Ni S, Gurnis M (2005) Deep mantle structure and the postperovskite phase transition. Proc Natl Acad Sci USA 102:17257–17263CrossRefGoogle Scholar
  11. Hirose K, Nagaya Y, Merkel S, Ohishi Y (2010) Deformation of MnGeO3 post-perovskite at lower mantle pressure and temperature. Geophys Res Lett 37:L20302CrossRefGoogle Scholar
  12. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:B864–B871CrossRefGoogle Scholar
  13. Hunt SA, Weidner DJ, Li L, Wang L, Walte NP, Brodholt JP, Dobson DP (2009) Weakening of calcium iridate during its transformation from perovskite to post-perovskite. Nat Geosci 2:794–797CrossRefGoogle Scholar
  14. Hustoft J, Shim S, Kubo A, Nishiyama N (2008a) Raman spectroscopy of CaIrO3 postperovskite up to 30 GPa. Am Miner 93:1654–1658CrossRefGoogle Scholar
  15. Hustoft J, Catalli K, Shim S, Kubo A, Prakapenka VB, Kunz M (2008b) Equation of state of NaMgF3 postperovskite: implication for the seismic velocity changes in the D″ region. Geophys Res Lett 35:L10309CrossRefGoogle Scholar
  16. Iitaka T, Hirose K, Kawamura K, Murakami M (2004) The elasticity of the MgSiO3 post-perovskite phase in the Earth’s lowermost mantle. Nature 430:442–445CrossRefGoogle Scholar
  17. Ischia G, Wenk H-R, Lutterotti L, Berberich F (2005) Quantitative Rietveld texture analysis of zirconium from single synchrotron diffraction images. J Appl Crystallogr 38:377–380CrossRefGoogle Scholar
  18. Karato SI, Jung H, Katayama I, Skemer P (2008) Geodynamic significance of seismic anisotropy of the upper mantle: new insights from laboratory studies. Annu Rev Earth Planet Sci 36:59–95CrossRefGoogle Scholar
  19. Karki BB (2000) Thermal pressure in MgO and MgSiO3 perovskite at lower mantle conditions. Am Miner 85:1447–1451Google Scholar
  20. Karki BB, Stixrude L, Wentzcovitch RM (2001) High-pressure elastic properties of major materials of Earth’s mantle from first principles. Rev Geophys 39:507–534Google Scholar
  21. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133–A1138CrossRefGoogle Scholar
  22. Kresse G, Furthmüller J (1996a) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186CrossRefGoogle Scholar
  23. Kresse G, Furthmüller J (1996b) Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6:15–50CrossRefGoogle Scholar
  24. Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 56:1758–1775CrossRefGoogle Scholar
  25. Kubo A, Kiefer B, Shen G, Prakapenka VB, Cava RJ, Duffy TS (2006) Stability and equation of state of the post-perovskite phase in MgGeO3 to 2 Mbar. Geophys Res Lett 33:L12S12CrossRefGoogle Scholar
  26. Kubo A, Kiefer B, Shim S, Shen G, Prakapenka VB, Duffy TS (2008) Rietveld structure refinement of MgGeO3 post-perovskite phase to 1 Mbar. Am Miner 93:965–976CrossRefGoogle Scholar
  27. Lay T, Garnero EJ (2007) Reconciling the post-perovskite phase with seismological observations of lowermost mantle structure. In: Hirose K et al (ed) Post-perovskite: the last mantle phase transition, AGU monograph, vol 174. pp 129–154Google Scholar
  28. Liermann HP, Merkel S, Miyagi L, Wenk HR, Shen G, Cynn H, Evans WJ (2009) Experimental method for in situ determination of material textures at simultaneous high pressure and high temperature by means of radial diffraction in the diamond anvil cell. Rev Sci Instrum 80:104501CrossRefGoogle Scholar
  29. Liu H, Chen J, Hu J, Martin CD, Weidner DJ, Häusermann D, Mao HK (2005) Octahedral tilting evolution and phase transition in orthorhombic NaMgF3 perovskite under pressure. Geophys Res Lett 32:L04304CrossRefGoogle Scholar
  30. Loubet N, Ribe NM, Gamblin Y (2009) Deformation modes of subducted lithosphere at the core-mantle boundary: an experimental investigation. Geochem Geophys Geosyst 10:Q10004CrossRefGoogle Scholar
  31. Lutterotti L, Matthies S, Wenk HR, Schultz AS, Richardson JW (1997) Combined texture and structure analysis of deformed limestone from time-of-flight neutron diffraction spectra. J Appl Phys 81:594CrossRefGoogle Scholar
  32. Martin CD, Crichton WA, Liu H, Prakapenka V, Chen J, Parise JB (2006a) Rietveld structure refinement of perovskite and post-perovskite phases of NaMgF3 (Neighborite) at high pressures. Am Miner 91:1703–1706CrossRefGoogle Scholar
  33. Martin CD, Crichton WA, Liu H, Prakapenka V, Chen J, Parise JB (2006b) Phase transitions and compressibility of NaMgF3 (Neighborite) in perovskite- and post-perovskite-related structures. Geophys Res Lett 33:L11305CrossRefGoogle Scholar
  34. Matthies S, Humbert M (1993) The realization of the concept of a geometric mean for calculating physical constants of polycrystalline materials. Physica Status Solidi (b) 177:K47–K50CrossRefGoogle Scholar
  35. Matthies S, Vinel GW (1982) On the reproduction of the orientation distribution function of texturized samples from reduced pole figures using the conception of a conditional ghost correction. Physica Status Solidi (b) 112:K111–K114CrossRefGoogle Scholar
  36. Matthies S, Priesmeyer HG, Daymond MR (2001) On the diffractive determination of single-crystal elastic constants using polycrystalline samples. J Appl Crystallogr 34:585–601CrossRefGoogle Scholar
  37. McNamara AK, van Keken PE, Karato SI (2002) Development of anisotropic structure in the Earth’s lower mantle by solid-state convection. Nature 416:310–314CrossRefGoogle Scholar
  38. McNamara AK, Keken PE, Karato SI (2003) Development of finite strain in the convecting lower mantle and its implications for seismic anisotropy. J Geophys Res 108:2230CrossRefGoogle Scholar
  39. Merkel S, Wenk HR, Gillet P, Mao HK, Hemley RJ (2004) Deformation of polycrystalline iron up to 30 GPa and 1000 K. Phys Earth Planet Interiors 145:239–251CrossRefGoogle Scholar
  40. Merkel S, Kubo A, Miyagi L, Speziale S, Duffy TS, Mao HK, Wenk HR (2006) Plastic deformation of MgGeO3 post-perovskite at lower mantle pressures. Science 311:644–646CrossRefGoogle Scholar
  41. Merkel S, McNamara AK, Kubo A, Speziale S, Miyagi L, Meng Y, Duffy TS, Wenk HR (2007) Deformation of (Mg, Fe)SiO3 post-perovskite and D′′ anisotropy. Science 316:1729–1732CrossRefGoogle Scholar
  42. Metsue A, Carrez P, Mainprice D, Cordier P (2009) Numerical modelling of dislocations and deformation mechanisms in CaIrO3 and MgGeO3 post-perovskites—comparison with MgSiO3 post-perovskite. Phys Earth Planet Interiors 174:165–173CrossRefGoogle Scholar
  43. Miyagi L (2010b) Deformation and texture development in deep earth mineral phases: implications for seismic anisotropy and dynamics. Ph.D. thesis, University of California BerkeleyGoogle Scholar
  44. Miyagi L, Nishiyama N, Wang Y, Kubo A, West DV, Cava RJ, Duffy TS, Wenk HR (2008a) Deformation and texture development in CaIrO3 post-perovskite phase up to 6 GPa and 1300 K. Earth Planet Sci Lett 268:515–525CrossRefGoogle Scholar
  45. Miyagi L, Kunz M, Knight J, Nasiatka J, Voltolini M, Wenk HR (2008b) In situ phase transformation and deformation of iron at high pressure and temperature. J Appl Phys 104:103510–103519CrossRefGoogle Scholar
  46. Miyagi L, Kanitpanyacharoen W, Kaercher P, Lee KKM, Wenk HR (2010) Slip systems in MgSiO3 post-perovskite: implications for D′′ anisotropy. Science 329:1639–1641CrossRefGoogle Scholar
  47. Miyajima N, Walte N (2009) Burgers vector determination in deformed perovskite and post-perovskite of CaIrO3 using thickness fringes in weak-beam dark-field images. Ultramicroscopy 109:683–692CrossRefGoogle Scholar
  48. Miyajima N, Ohgushi K, Ichihara M, Yagi T (2006) Crystal morphology and dislocation microstructures of CaIrO3: a TEM study of an analogue of the MgSiO3 post-perovskite phase. Geophys Res Lett 33:L12302CrossRefGoogle Scholar
  49. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integration. Phys Rev B 13:5188–5192CrossRefGoogle Scholar
  50. Murakami M, Hirose K, Kawamura K, Sata N, Ohishi Y (2004) Post-perovskite phase transition in MgSiO3. Science 304:855–858CrossRefGoogle Scholar
  51. Nabarro FRN (1948) Deformation of crystals by the motion of single ions. In: Report of a conference on strength of solids, vol 75. The physical Society, London, pp 75–90Google Scholar
  52. Navrotsky A, Ross N (1988) Study of the MgGeO3 polymorphs (ortho-pyroxene, clinopyroxene, and ilmenite structures) by calorimetry, spectroscopy and phase-equilibria. Am Miner 73:1355–1365Google Scholar
  53. Niwa K, Yagi T, Ohgushi K, Merkel S, Miyajima N, Kikegawa T (2007) Lattice preferred orientation in CaIrO3 perovskite and post-perovskite formed by plastic deformation under pressure. Phys Chem Mineral 34:679–686CrossRefGoogle Scholar
  54. Nowacki A, Wookey J, Kendall J (2010) Deformation of the lowermost mantle from seismic anisotropy. Nature 467:1091–1094CrossRefGoogle Scholar
  55. Oganov AR, Ono S (2004) Theoretical and experimental evidence for a post-perovskite phase of MgSiO3 in Earth’s D′′ layer. Nature 430:445–448CrossRefGoogle Scholar
  56. Oganov AR, Brodholt JP, Price G (2001) Ab initio elasticity and thermal equation of state of MgSiO3 perovskite. Earth Planet Sci Lett 184:555–560CrossRefGoogle Scholar
  57. Oganov AR, Martonak R, Laio A, Raiteri P, Parrinello M (2005) Anisotropy of Earth’s D” layer and stacking faults in the MgSiO3 post-perovskite phase. Nature 438:1142–1144CrossRefGoogle Scholar
  58. Okada T, Yagi T, Niwa K, Kikegawa T (2010) Lattice-preferred orientations in post-perovskite-type MgGeO3 formed by transformations from different pre-phases. Phys Earth Planet Interiors 180:195–202CrossRefGoogle Scholar
  59. Panning M, Romanowicz B (2004) Inferences on flow at the base of Earth’s mantle based on seismic anisotropy. Science 303:351–353CrossRefGoogle Scholar
  60. Panning M, Romanowicz B (2006) A three-dimensional radially anisotropic model of shear velocity in the whole mantle. Geophys J Int 167:361–379CrossRefGoogle Scholar
  61. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868CrossRefGoogle Scholar
  62. Popa NC, Balzar D (2002) An analytical approximation for a size-broadened profile given by the lognormal and gamma distributions. J Appl Crystallogr 35:338–346CrossRefGoogle Scholar
  63. Santillán J, Shim S, Shen G, Prakapenka VB (2006) High-pressure phase transition in Mn2O3: application for the crystal structure and preferred orientation of the CaIrO3 type. Geophys Res Lett 33:L15307CrossRefGoogle Scholar
  64. Shim S (2008) The post-perovskite transition. Annu Rev Earth Planet Sci 36:569–599CrossRefGoogle Scholar
  65. Shim S, Duffy TS, Jeanloz R, Shen G (2004) Stability and crystal structure of MgSiO3 perovskite to the core-mantle boundary. Geophys Res Lett 31:L10603CrossRefGoogle Scholar
  66. Singh AK (1993) The lattice strains in a specimen (cubic system) compressed nonhydrostatically in an opposed anvil device. J Appl Phys 73:4278–4286CrossRefGoogle Scholar
  67. Singh AK, Balasingh C, Mao HK, Hemley RJ, Shu J (1998) Analysis of lattice strains measured under nonhydrostatic pressure. J Appl Phys 83:7567–7575CrossRefGoogle Scholar
  68. Speziale S, Lonardelli I, Miyagi L, Pehl J, Tommaseo CE, Wenk HR (2006) Deformation experiments in the diamond-anvil cell: texture in copper to 30 GPa. J Phys Condens Matter 18:S1007–S1020CrossRefGoogle Scholar
  69. Stackhouse S, Brodholt JP (2007) The high-temperature elasticity of MgSiO3 post-perovskite. In: Hirose K et al (ed) Post-perovskite: the last mantle phase transition, AGU monograph, vol 174. pp 99–113Google Scholar
  70. Stackhouse S, Brodholt JP, Wookey J, Kendall J, Price GD (2005) The effect of temperature on the seismic anisotropy of the perovskite and post-perovskite polymorphs of MgSiO3. Earth Planet Sci Lett 230:1–10CrossRefGoogle Scholar
  71. Tomé CN, Canova G (2000) Self-consistent modeling of heterogeneous plasticity. In: Kocks UF et al (ed) Texture and anisotropy: preferred orientations in polycrystals and their effect on material properties. Cambridge University Press, Cambridge, pp 466–510Google Scholar
  72. Tsuchiya T, Tsuchiya J (2007) Structure and elasticity of Cmcm CaIrO3 and their pressure dependences: Ab initio calculations. Phys Rev B 76:144119CrossRefGoogle Scholar
  73. Tsuchiya T, Tsuchiya J, Umemoto K, Wentzcovitch RM (2004) Phase transition in MgSiO3 perovskite in the Earth’s lower mantle. Earth Planet Sci Lett 224:241–248CrossRefGoogle Scholar
  74. Usui Y, Tsuchiya J, Tsuchiya T (2010) Elastic, vibrational, and thermodynamic properties of MgGeO3 postperovskite investigated by first principles simulation. J Geophys Res 115:B03201CrossRefGoogle Scholar
  75. Walte NP, Heidelbach F, Miyajima N, Frost D (2007) Texture development and TEM analysis of deformed CaIrO3: implications for the D″ layer at the core-mantle boundary. Geophys Res Lett 34:L08306CrossRefGoogle Scholar
  76. Walte NP, Heidelbach F, Miyajima N, Frost DJ, Rubie DC, Dobson DP (2009) Transformation textures in post-perovskite: understanding mantle flow in the D″ layer of the earth. Geophys Res Lett 36:L04302CrossRefGoogle Scholar
  77. Wenk HR, Lonardelli I, Pehl J, Devine JM, Prakapenka VB, Shen G, Mao HK (2004) In situ observation of texture development in olivine, ringwoodite, magnesiowustite and silicate perovskite at high pressure. Earth Planet Sci Lett 226:507–519CrossRefGoogle Scholar
  78. Wenk HR, Lonardelli I, Merkel S, Miyagi L, Pehl J, Speziale S, Tommaseo CE (2006) Deformation textures produced in diamond anvil experiments, analysed in radial diffraction geometry. J Phys Condens Matter 18:S933–S947CrossRefGoogle Scholar
  79. Wenk HR, Cottaar S, Tomé CN, McNamara AK, Romanowicz B (2011) Deformation in the lowermost mantle: from polycrystal plasticity to seismic anisotropy. Earth Planet Sci Lett 306:33–45CrossRefGoogle Scholar
  80. Wentzcovitch RM, Tsuchiya T, Tsuchiya J (2006) MgSiO3 postperovskite at D″ conditions. Proc Natl Acad Sci USA 103:543–546CrossRefGoogle Scholar
  81. Wookey J, Kendall J (2007) Seismic anisotropy of post-perovskite and the lowermost mantle. In: Hirose K et al (eds) Post-perovskite: the last mantle phase transition, AGU monograph, vol 174. pp 171–189Google Scholar
  82. Yamazaki D, Yoshino T, Ohfuji H, Ando J, Yoneda A (2006) Origin of seismic anisotropy in the D’’ layer inferred from shear deformation experiments on post-perovskite phase. Earth Planet Sci Lett 252:372–378CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Lowell Miyagi
    • 1
    • 2
    Email author
  • Waruntorn Kanitpanyacharoen
    • 2
  • Stephen Stackhouse
    • 3
  • Burkhard Militzer
    • 2
  • Hans-Rudolf Wenk
    • 2
  1. 1.Department of Geology and GeophysicsYale UniversityNew HavenUSA
  2. 2.Department of Earth and Planetary ScienceUniversity of CaliforniaBerkeleyUSA
  3. 3.School of Earth and the EnvironmentUniversity of LeedsLeedsUK

Personalised recommendations