Physics and Chemistry of Minerals

, Volume 38, Issue 5, pp 363–377 | Cite as

Dislocation recovery in fine-grained polycrystalline olivine

  • R. J. M. FarlaEmail author
  • H. Kokkonen
  • J. D. Fitz Gerald
  • A. Barnhoorn
  • U. H. Faul
  • I. Jackson
Original Paper


The rate of static dislocation recovery in Fo90 olivine has been studied under conditions of high temperature and controlled atmosphere in compressively deformed polycrystals hot-pressed from synthetic (sol–gel) and natural (San Carlos) precursor powders. The sol–gel olivine, containing a small fraction of orthopyroxene, was deformed to a final strain of 19% with a maximum differential stress of 266 MPa whereas the San Carlos specimen was deformed to 15% strain and 260 MPa differential stress. Small samples cut from these deformed materials were annealed under high-temperature, controlled atmosphere conditions, for different durations to allow partial recovery of the dislocation sub-structures. Oxidative-decoration of the microstructural features, followed by backscattered electron imaging at 5 kV and image analysis, was used to determine dislocation density. The variation of dislocation density ρ with time t at absolute temperature T was fitted to a second-order rate equation, in integral form, 1/ρ(t) − 1/ρ(0) = kt with k = k 0 exp(−E a/RT). The activation energy E a of the recovery process is 240 ± 43 and 355 ± 81 kJ mol−1 for sol–gel and San Carlos olivine polycrystals, respectively. The measured rates are one to two orders of magnitude lower than those reported in previous studies on natural single crystal olivine. The difference may be explained by several factors such as high dislocation densities measurable from large areas at high magnification for the SEM and the technique used to estimate dislocation densities. Comparison between fine-grained sol–gel olivine and the coarser-grained San Carlos olivine aggregate did not indicate that grain boundaries play an important role in dislocation recovery, but the absence of grain boundaries might also have contributed to the high dislocation recovery rates previously measured for single crystals.


Dislocation recovery Sol–gel San Carlos Synthetic olivine Microstructures Diffusion FE-SEM 



We would like to thank Craig Saint for his assistance in the laboratory and Frank Brink at the Electron Microscopy Unit. This research was funded by the EIPRS grant from the Australian government. The manuscript was greatly improved by Dr. Ralf Dohmen and an anonymous reviewer.


  1. Bai Q, Kohlstedt DL (1992) High-temperature creep of olivine single-crystals 2. Dislocation-structures. Tectonophysics 206(1–2):1–29CrossRefGoogle Scholar
  2. Chakraborty S (1997) Rates and mechanisms of Fe-Mg interdiffusion in olivine at 980–1300°C. J Geophys Res 102(B2):12317–12331CrossRefGoogle Scholar
  3. Costa F, Chakraborty S (2008) The effect of water on Si and O diffusion rates in olivine and implications for transport properties and processes in the upper mantle. Phys Earth Planet Inter 166:11–29CrossRefGoogle Scholar
  4. Csikor FF, Motz C, Weygand D, Zaiser M, Zapperi S (2007) Dislocation avalanches, strain bursts, and the problem of plastic forming at the micrometer scale. Science 318(5848):251–254CrossRefGoogle Scholar
  5. Dohmen R, Chakraborty S (2007) Fe–Mg diffusion in olivine II: point defect chemistry, change of diffusion mechanisms and a model for calculation of diffusion coefficients in natural olivine. Phys Chem Miner 34:409–430CrossRefGoogle Scholar
  6. Dohmen R, Chakraborty S, Becker H (2002) Si and O diffusion in olivine and implications for characterizing plastic flow in the mantle. Geophys Res Lett 29Google Scholar
  7. Dohmen R, Becker H, Chakraborty S (2007) Fe - Mg diffusion in olivine I: experimental determination between 700 and 1,200°C as a function of composition, crystal orientation and oxygen fugacity. Phys Chem Miner 34:389–407CrossRefGoogle Scholar
  8. Drouin D, Couture AR, Joly D, Tastet X, Aimez V, Gauvin R (2007) CASINO V2.42–a fast and easy-to-use modeling tool for scanning electron microscopy and microanalysis users, vol 29. Wiley Periodicals, USA, pp 92–101Google Scholar
  9. Du Frane WL, Roberts JJ, Toffelmier DA, Tyburczy JA (2005) Anisotropy of electrical conductivity in dry olivine. Geophys Res Lett 32(24):L24,315CrossRefGoogle Scholar
  10. Durham WB, Goetze C, Blake B (1977) Plastic flow of oriented single crystals of olivine: 2. Observations and interpretation of the dislocation theory. J Geophys Res 82:5755–5770CrossRefGoogle Scholar
  11. Faul UH, Jackson I (2007) Diffusion creep of dry, melt-free olivine. J Geophys Res 112:1–14Google Scholar
  12. Faul UH, Fitz Gerald JD, Farla RJM, Ahlefeldt R, Jackson I (2010) Dislocation creep of fine-grained olivine. J Geophys ResGoogle Scholar
  13. Gerard O, Jaoul O (1989) Oxygen diffusion in San Carlos olivine. J Geophys Res 94(B4):4119–4128CrossRefGoogle Scholar
  14. Goetze C (1978) Mechanisms of creep in olivine. Philos Trans R Soc Lond 288(1350):99–119CrossRefGoogle Scholar
  15. Goetze C, Kohlstedt DL (1973) Laboratory study of dislocation climb and diffusion in olivine. J Geophys Res 78(26):5961–5971CrossRefGoogle Scholar
  16. Goldstein JI, Newbury DE, Echlin P, Joy DC, Fiori C, Lifshin E (1984) Scanning electron microscopy and x-ray analysis. Plenum Press, New YorkGoogle Scholar
  17. Gueguen Y, Darot M, Mazot P, Woirgard J (1989) Q−1 of forsterite single crystals. Phys Earth Planet Inter 55(3-4):254–258CrossRefGoogle Scholar
  18. Hall EO (1951) The deformation and ageing of mild steel: Iii discussion of results. Proc Phys Soc Sect B 64(9):747.
  19. Hennig P, Denk W (2007) Point-spread functions for backscattered imaging in the scanning electron microscope. J Appl Phys 102:1–8Google Scholar
  20. Houlier B, Jaoul O, Abel F, Liebermann RC (1988) Oxygen and silicon self-diffusion in natural olivine at t = 1,300°C. Phys Earth Planet Inter 50(3):240–250CrossRefGoogle Scholar
  21. Houlier B, Cheraghmakani M, Jaoul O (1990) Silicon diffusion in San Carlos olivine. Phys Earth Planet Interiors 62:329–340CrossRefGoogle Scholar
  22. Hull D, Bacon DJ (2001) Introduction to dislocations, 4th edn. Butterworth-Heinemann, OxfordGoogle Scholar
  23. Jackson I, Fitz Gerald JD, Faul UH, Tan BH (2002) Grain-size sensitive seismic wave attenuation in polycrystalline olivine. J Geophys Res 107(B12):2360CrossRefGoogle Scholar
  24. Jackson I, Faul UH, Fitz Gerald JD, Tan BH (2004) Shear wave attenuation and dispersion in melt-bearing olivine polycrystals: 1. specimen fabrication and mechanical testing. J Geophys Res 109(B6):B06201CrossRefGoogle Scholar
  25. Jaoul O, Froidevaux C, Durham WB, Michaut M (1980) Oxygen self-diffusion in forsterite—implications for the high-temperature creep mechanism. Earth Planet Sci Lett 47(3):391–397CrossRefGoogle Scholar
  26. Jaoul O, Bertranalvarez Y, Liebermann RC, Price GD (1995) Fe-Mg interdiffusion in olivine up to 9 GPa at T = 600–900°C; experimental data and comparison with defect calculations. Phys Earth Planet Inter 89(3–4):199–218CrossRefGoogle Scholar
  27. Jung H, Karato S (2001) Effects of water on dynamically recrystallized grain-size of olivine. J Struct Geol 23(9):1337–1344CrossRefGoogle Scholar
  28. Kanaya K, Okayama S (1972) Penetration and energy-loss theory in solid targets. J Phys D Appl Phys 5:43–58CrossRefGoogle Scholar
  29. Karato S (1987) Scanning electron microscope observation of dislocations in olivine. Phys Chem Miner 14(3):245–248CrossRefGoogle Scholar
  30. Karato S (2003) Mapping water content in the upper mantle. In: Inside the subduction factory, vol 138. AGU Geophysical Monograph Series, pp 135–152Google Scholar
  31. Karato S (2008) Deformation of earth materials: an introduction to the rheology of solid earth. Cambridge University Press, LondonGoogle Scholar
  32. Karato S, Jung H (2003) Effects of pressure on high-temperature dislocation creep in olivine. Philos Mag 83(3):401–414CrossRefGoogle Scholar
  33. Karato S, Lee KH (1999) Stress-strain distribution in deformed olivine aggregates: inference from microstructural observations and implications for texture development. In: Proceedings of the twelfth international conference on textures of materials, pp 1546–1555Google Scholar
  34. Karato S, Ogawa M (1982) High-pressure recovery of olivine—implications for creep mechanisms and creep activation volume. Phys Earth Planet Inter 28(2):102–117CrossRefGoogle Scholar
  35. Karato S, Sato H (1982) Effect of oxygen partial-pressure on the dislocation recovery in olivine—a new constraint on creep mechanisms. Phys Earth Planet Inter 28(4):312–319CrossRefGoogle Scholar
  36. Karato S, Rubie DC, Yan H (1993) Dislocation recovery in olivine under deep upper-mantle conditions—implications for creep and diffusion. J Geophys Res 98(B6):9761–9768CrossRefGoogle Scholar
  37. Kohlstedt DL, Goetze C, Durham WB, Vandersande J (1976) New technique for decorating dislocations in olivine. Science 191(4231):1045–1046CrossRefGoogle Scholar
  38. Kohlstedt DL, Nichols HPK, Hornack P (1980) The effect of pressure on the rate of dislocation recovery in olivine. J Geophys Res 85(B6):3122–3130CrossRefGoogle Scholar
  39. Lui M, Evans B (1997) Dislocation recovery kinetics in single-crystal calcite. J Geophys Res 102(B11):24801–24809Google Scholar
  40. McDonnell RD, Spiers CJ, Peach CJ (2002) Fabrication of dense forsterite-enstatite polycrystals for experimental studies. Phys Chem Miner 29(1):19–31CrossRefGoogle Scholar
  41. Mei S, Kohlstedt DL (2000) Influence of water on plastic deformation of olivine aggregates. 1: Diffusion creep regime. J Geophys Res 105(B9):21457–21469CrossRefGoogle Scholar
  42. Moretti P, Laurson L, Alava MJ (2008) Dislocation interactions mediated by grain boundaries. Condens Matter Mater Sci 0803.1136:1–13Google Scholar
  43. Murata K (1976) Exit angle dependence of penetration depth of backscattered electrons in the scanning electron microscope. Phys Solid State 36:197–208CrossRefGoogle Scholar
  44. Nes E (1995) Recovery revisited. Acta Metall Mater 43:2189–2207CrossRefGoogle Scholar
  45. Poirier JP, Vergobbi B (1978) Splitting of dislocations in olivine, cross-slip-controlled creep and mantle rheology. Phys Earth Planet Inter 16:370–378CrossRefGoogle Scholar
  46. Reddy KPR, Oh SM, Major LD, Cooper AR (1980) Oxygen diffusion in forsterite. J Geophys Res 85:322–326CrossRefGoogle Scholar
  47. Roberts JJ, Tyburczy JA (1993) Frequency-dependent electrical-properties of dunite as functions of temperature and oxygen fugacity. Phys Chem Miner 19(8):545–561CrossRefGoogle Scholar
  48. Smyth DM, Stocker RL (1975) Point defects and nonstoichiometry in forsterite. Phys Earth Planet Inter 10(2):183–192CrossRefGoogle Scholar
  49. Spandler C, O’Neill HS (2010) Diffusion and partition coefficients of minor and trace elements in San Carlos olivine at 1,300°C with some geochemical implications. Contrib Miner Petrol 159:791–818CrossRefGoogle Scholar
  50. Tan BH, Jackson I, Fitz Gerald JD (2001) High-temperature viscoelasticity of fine-grained polycrystalline olivine. Phys Chem Miner 28(9):641–664CrossRefGoogle Scholar
  51. Yan H (1992) Dislocation recovery in olivine. Master’s thesis, University of MinnesotaGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • R. J. M. Farla
    • 1
    Email author
  • H. Kokkonen
    • 1
  • J. D. Fitz Gerald
    • 1
  • A. Barnhoorn
    • 1
    • 2
  • U. H. Faul
    • 3
  • I. Jackson
    • 1
  1. 1.Research School of Earth SciencesAustralian National UniversityCanberraAustralia
  2. 2.Department of Earth SciencesUtrecht UniversityUtrechtThe Netherlands
  3. 3.Department of Earth SciencesBoston UniversityBostonUSA

Personalised recommendations