Advertisement

Physics and Chemistry of Minerals

, Volume 38, Issue 5, pp 357–361 | Cite as

Compressibility of strontium orthophosphate Sr3(PO4)2 at high pressure

  • Shuangmeng Zhai
  • Weihong Xue
  • Daisuke Yamazaki
  • Shuangming Shan
  • Eiji Ito
  • Naotaka Tomioka
  • Akira Shimojuku
  • Ken-ichi Funakoshi
Original Paper

Abstract

High pressure in situ synchrotron X-ray diffraction experiment of strontium orthophosphate Sr3(PO4)2 has been carried out to 20.0 GPa at room temperature using multianvil apparatus. Fitting a third-order Birch–Murnaghan equation of state to the PV data yields a volume of V 0 = 498.0 ± 0.1 Å3, an isothermal bulk modulus of K T  = 89.5 ± 1.7 GPa, and first pressure derivative of K T ′ = 6.57 ± 0.34. If K T ′ is fixed at 4, K T is obtained as 104.4 ± 1.2 GPa. Analysis of axial compressible modulus shows that the a-axis (K a  = 79.6 ± 3.2 GPa) is more compressible than the c-axis (K c  = 116.4 ± 4.3 GPa). Based on the high pressure Raman spectroscopic results, the mode Grüneisen parameters are determined and the average mode Grüneisen parameter of PO4 vibrations of Sr3(PO4)2 is calculated to be 0.30(2).

Keywords

Sr3(PO4)2 Equation of state Synchrotron X-ray diffraction High pressure 

Notes

Acknowledgments

We thanks Prof. M. Matsui for his editorial handling and suggestion. Critical comments and suggestion from two anonymous reviewers are helpful to improve the manuscript. The X-ray diffraction measurements were conducted at BL04B1, SPring-8, Japan (proposal no. 2010A1314). This work was financially supported by National Natural Science Foundation of China (grant nos., 40973045 and 41010104017).

References

  1. Anderson OL, Isaak DG, Yamamoto S (1989) Anharmonicity and the equation of state for gold. J Appl Phys 65:1534–1543CrossRefGoogle Scholar
  2. Angel RJ (2001) Equations of state. High-temperature and high-pressure crystal chemistry. Reviews in Mineralogy and Geochemistry, vol 41. Mineralogical Society of America and Geochemical Society, Washington DC, pp 35–59Google Scholar
  3. Angel RJ (2002) EOSFIT V5.2. Crystallography Laboratory. Department of Geological Sciences Virginia Techology, USAGoogle Scholar
  4. Birch F (1947) Finite elastic strain of cubic crystals. Phys Rev 71:809–924CrossRefGoogle Scholar
  5. Comodi P, Liu Y, Frezzotti ML (2001) Structural and vibrational behaviour of fluorapatite with pressure. Part II: in situ micro-Raman spectroscopic investigation. Phys Chem Miner 28:225–231CrossRefGoogle Scholar
  6. Lin CC, Liu LG, Mernagh TP, Irifune T (2000) Raman spectroscopic study of hydroxyl-clinohumite at various pressures and temperatures. Phys Chem Miner 27:320–331CrossRefGoogle Scholar
  7. Litasov KD, Ohtani E, Suzuki A, Funakoshi K (2007) The compressibility of Fe- and Al-bearing phase D to 30 GPa. Phys Chem Miner 34:159–167CrossRefGoogle Scholar
  8. Matsukage KN, Ono S, Kawamoto T, Kikegawa T (2004) The compressibility of a natural apatite. Phys Chem Miner 31:580–584CrossRefGoogle Scholar
  9. Murayama JK, Nakai S, Kato M, Kumazawa M (1986) A dense polymorph of Ca3(PO4)2: a high pressure phase of apatite decomposition and its geochemical significance. Phys Earth Planet Inter 44:293–303CrossRefGoogle Scholar
  10. Nestola F, Ballaran TB, Ohashi H (2008) The high-pressure C2/c-P21/c phase transition along the LiAlSi2O6-LiGaSi2O6 solid solution. Phys Chem Miner 35:477–484CrossRefGoogle Scholar
  11. Popović L, Manoun B, Waal D (2002) Crystal chemistry, vibrational spectra and factor group analysis of Ba(3 − x)Srx(PO4)2 (0 ≤ x ≤ 3) solid solution series. J Alloy Compd 343:82–89CrossRefGoogle Scholar
  12. Shankland TJ, Bass JD (1988) Elastic properties and equations of state. American Geophysical Union, Washington, DCGoogle Scholar
  13. Shim SH, Duffy TS, Takemura K (2002) Equation of state of gold and its application to the phase boundaries near 660 km depth in Earth’s mantle. Earth Planet Sci Lett 203:729–739CrossRefGoogle Scholar
  14. Sugiyama K, Tokonami M (1987) Structure and crystal chemistry of a dense polymorph of tricalcium phosphate Ca3(PO4)2: a host to accommodate large lithophile elements in the Earth’s mantle. Phys Chem Miner 15:125–130CrossRefGoogle Scholar
  15. Sugiyama K, Tokonami M (1990) The crystal structure refinements of the strontium and barium orthophosphates. Miner J 15:141–146CrossRefGoogle Scholar
  16. Tsuchiya T (2003) First-principles prediction of the PVT equation of state of gold and the 660-km discontinuity in Earth’s mantle. J Geophys Res 108. doi: 10.1029/2003JB002446
  17. Vočadlo L, Poirer JP, Price GD (2000) Grüneisen parameters and isothermal equations of state. Am Mineral 85:390–395Google Scholar
  18. Williams Q, Knittle E (1996) Infrared and Raman spectra of Ca5(PO4)3F2-fluorapatite at high pressures: Compression-induced changes in phosphate site and Davydov splittings. J Phys Chem Solids 57:417–422CrossRefGoogle Scholar
  19. Xie X, Minitti ME, Chen M, Mao HK, Wang D, Shu J, Fei Y (2003) Tuite, γ-Ca3(PO4)2: a new mineral from the Suizhou L6 chondrite. Eur J Mineral 15:1001–1005CrossRefGoogle Scholar
  20. Zachariasen WH (1948) The crystal structure of the normal orthophosphates of barium and strontium. Acta Cryst 1:263–265CrossRefGoogle Scholar
  21. Zhai S, Liu X, Shieh S, Zhang L, Ito E (2009) Equation of state of γ-tricalcium phosphate, γ-Ca3(PO4)2, to lower mantle pressures. Am Mineral 94:1388–1391CrossRefGoogle Scholar
  22. Zhai S, Wu X, Ito E (2010) High-pressure Raman spectra of tuite, γ-Ca3(PO4)2. J Raman Spectrosc 41:1011–1013CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Shuangmeng Zhai
    • 1
  • Weihong Xue
    • 1
  • Daisuke Yamazaki
    • 2
  • Shuangming Shan
    • 2
  • Eiji Ito
    • 2
  • Naotaka Tomioka
    • 2
  • Akira Shimojuku
    • 2
  • Ken-ichi Funakoshi
    • 3
  1. 1.Key Laboratory of Orogenic Belts and Crustal Evolution, MOE; School of Earth and Space SciencesPeking UniversityBeijingChina
  2. 2.Institute for Study of the Earth’s InteriorOkayama UniversityTottoriJapan
  3. 3.Japan Synchrotron Radiation Research InstituteHyogoJapan

Personalised recommendations