Physics and Chemistry of Minerals

, Volume 38, Issue 4, pp 293–303 | Cite as

Raman study of apatite amorphised with swift heavy ions under various irradiation conditions

  • Christian Weikusat
  • Ulrich A. Glasmacher
  • Beatrice Schuster
  • Christina Trautmann
  • Ronald Miletich
  • Reinhard Neumann
Original Paper


Crystallographically oriented Durango fluorapatites were exposed to swift heavy ions (Xe, Ta, Au, U) at different irradiation conditions. Beam-induced sample modifications were investigated with respect to the effect of fluence (109–1013 ions/cm2), electronic energy loss (18–27 keV/nm), and pressure (3.6–11.5 GPa) applied during irradiation. In situ high-pressure irradiation was performed in diamond anvil cells. Confocal Raman spectroscopy was used to trace the occurring changes in the crystal lattice. Fragmentation of the crystal specimen depends on the orientation and sample thickness and was found to scale with energy loss and fluence. The radiation damage for irradiation along the c-axis was found to be larger than for the 〈hk0〉 direction, independent of the confining pressure. Observations on samples irradiated at high pressures indicate a stabilising effect, leading to reduced amorphisation in comparison to the samples irradiated without pressure.


Apatite Raman spectroscopy Swift heavy ions Radiation damage High pressure 



We thank Ilona Fin and Oliver Wienand for the careful preparation of the polished crystal sections. Financial support within the BMBF Verbundprojekt (Bundesministerium für Bilung und Forschung, project grant 05KK7VH1) and GSI research grant (project HDGLAS) is acknowledged. Background correction and mathematical fitting of the bands were done with the free software FITYK 0.89 (


  1. Barbarand J, Carter A, Wood I, Hurford T (2003) Compositional and structural control of fission-track annealing in apatite. Chem Geol 198:107–137CrossRefGoogle Scholar
  2. Bertel E, Märk TD (1983) Fission tracks in minerals: annealing kinetics, track structure and age correction. Phys Chem Miner 9:197–204CrossRefGoogle Scholar
  3. Boyer LL, Fleury PA (1974) Determination of interatomic interactions Ca10(PO4)6F2 (fluorapatite) from structural and lattice-dynamical data. Phys Rev B 9:2693–2700CrossRefGoogle Scholar
  4. Carlson WD, Donelick RA, Ketcham RA (1999) Variability of apatite fission-track annealing kinetics: I experimental results. Am Mineral 84:1213–1223Google Scholar
  5. Comodi P, Liu Y, Frezzotti ML (2001) Structural and vibrational behaviour of fluorapatite with pressure. Part II: In situ micro-Raman spectroscopic investigation. Phys Chem Miner 28:225–231CrossRefGoogle Scholar
  6. Crowley KD, Cameron M, Schaefer RL (1990) Annealing of etchable fission-track damage in F-, OH-, Cl- and Sr-apatite: 1. Systematics and preliminary interpretations. Nucl Tracks Radiat Meas 17:409–410CrossRefGoogle Scholar
  7. Crowley KD, Cameron M, Schaefer RL (1991) Experimental studies of annealing of etched fission tracks in fluorapatite. Geochim Cosmochim Acta 55:1449–1465CrossRefGoogle Scholar
  8. De Wolf I (1996) Micro-Raman spectroscopy to study local mechanical stress in silicon integrated circuits. Semicond Sci Technol 11:139–154CrossRefGoogle Scholar
  9. Devarajan V, Klee WE (1981) A potential model for fluorapatite. Phys Chem Miner 7:35–42CrossRefGoogle Scholar
  10. Donelick RA (1991) Crystallographic orientation dependence of mean etchable fission track length in apatite: an empirical model and experimental observations. Am Mineral 76:83–91Google Scholar
  11. Donelick RA, Ketcham RA, Carlson WD (1999) Variability of apatite fission track annealing kinetics: II crystallographic orientation effects. Am Mineral 84:1224–1234Google Scholar
  12. Glasmacher UA, Lang M, Keppler H, Langenhorst F, Neumann R, Schardt D, Trautmann C, Wagner GA (2006) Phase transitions in solids stimulated by simultaneous exposure to high pressure and relativistic heavy ions. Phys Rev Lett 96:195701CrossRefGoogle Scholar
  13. Green PF, Duddy IR, Gleadow AJW, Tingate PR, Laslett GM (1985) Fission-track annealing in apatite: track length measurements and the form of the Arrhenius plot. Nucl Tracks 10:323–328Google Scholar
  14. Green PF, Duddy IR, Gleadow AJW, Tingate PR, Laslett GM (1986) Thermal annealing of fission tracks in apatite: 1. A qualitative description. Chem Geol 59:237–253CrossRefGoogle Scholar
  15. Jaskierowicz G, Dunlop A, Jonckheere R (2004) Track formation in fluorapatite irradiated with energetic cluster ions. Nucl Instrum Methods Phys Res B 222:213–227CrossRefGoogle Scholar
  16. Klotz S, Chervin JC, Munsch P, Le Marchand G (2009) Hydrostatic limits of 11 pressure transmitting media. J Phys D Appl Phys 42:1–7CrossRefGoogle Scholar
  17. Kohn BP, Belton DX, Brown RW, Gleadow AJW, Green PF, Lovering JF (2003) Comment on: “Experimental evidence for the pressure dependence of fission-track annealing in apatite” by A.S. Wendt et al. [Earth Planet. Sci. Lett. 201 (2002) 593–607]. Earth Planet Sci Lett 215:299–306CrossRefGoogle Scholar
  18. Konzett J, Frost DJ (2009) The High P-T Stability of Hydroxyl-apatite in Natural and Simplified MORB—an experimental study to 15 GPa with implications for transport and storage of phosphorus and halogens in subduction zones. J Petrol 50:2043–2062CrossRefGoogle Scholar
  19. Kravitz LC, Kingsley JD, Elkin EL (1968) Raman and infrared studies on coupled PO4-vibrations. J Chem Phys 49:4600–4610CrossRefGoogle Scholar
  20. Lang M, Lian J, Zhang F, Hendriks BWH, Trautmann C, Neumann R, Ewing RC (2008a) Fission tracks simulated by swift heavy ions at crustal pressures and temperatures. Earth Planet Sci Lett 274:355–358CrossRefGoogle Scholar
  21. Lang M, Zhang F, Lian J, Trautmann C, Neumann R, Ewing RC (2008b) Irradiation-induced stabilization of zircon (ZrSiO4) at high pressure. Earth Planet Sci Lett 269:291–295CrossRefGoogle Scholar
  22. Lang M, Zhang F, Lian J, Trautmann C, Neumann R, Ewing RC (2009a) Combined high pressure and heavy-ion irradiation a novel approach. J Synchrotron Radiat 16:773–777CrossRefGoogle Scholar
  23. Lang M, Zhang F, Zhang J, Wang J, Schuster B, Trautmann C, Neumann R, Becker U, Ewing RC (2009b) Nanoscale manipulation of the properties of solids at high pressure with relativistic heavy ions. Nat Mater 8:793–797CrossRefGoogle Scholar
  24. Liu J, Glasmacher UA, Lang M, Trautmann C, Voss KO, Neumann R, Wagner GA, Miletich R (2008) Raman spectroscopy of apatite irradiated with swift heavy ions with and without simultaneous exertion of high pressure. Appl Phys A 91:17–22CrossRefGoogle Scholar
  25. Mao H, Xu J, Bell P (1986) Calibration of the ruby gauge to 800 kbar under quasihydrostatic conditions. J Geophys Res 91:4673–4676CrossRefGoogle Scholar
  26. Miletich R, Allan D, Kuhs W (2000) High-pressure single-crystal techniques. Rev Mineral Geochem 41:445–519Google Scholar
  27. Miro S, Grebille D, Chateigner D, Pelloquin D, Stoquert JP, Grob JJ, Costantini JM, Studer F (2005) X-ray diffraction study of damage induced by swift heavy ion irradiation in fluorapatite. Nucl Instrum Methods Phys Res B 227:306–318CrossRefGoogle Scholar
  28. O’Shea DC, Bartlett ML, Young RA (1974) Compositional analysis of apatites with laser-raman spectroscopy: (OH, F, CL) apatites. Arch Oral Biol 19:995–1006CrossRefGoogle Scholar
  29. Paul TA, Fitzgerald PG (1992) Transmission electron microscopic investigation of fission tracks in fluorapatite. Am Mineral 77:336–344Google Scholar
  30. Penel G, Leroy G, Rey C, Bres E (1998) MicroRaman spectral study of the PO4 and CO3 vibrational modes in synthetic and biological apatites. Calcif Tissue Int 63:475–481CrossRefGoogle Scholar
  31. Rabone JAL, Carter A, Hurford AJ, de Leeuw NH (2008) Modelling the formation of fission tracks in apatite minerals using molecular dynamics simulations. Phys Chem Miner 35:583–596CrossRefGoogle Scholar
  32. Sandhu AS, Singh L, Ramola RC, Singh S, Virk HS (1990) Annealing kinetics of heavy ion radiation damage in crystalline materials. Nucl Instrum Methods Phys Res B 46:122–124CrossRefGoogle Scholar
  33. Schouwink P, Miletich R, Ullrich A, Glasmacher UA, Trautmann C, Neumann R, Kohn BP (2009) Ion tracks in apatite at high pressures. The effect of crystallographic track orientation on the elastic properties of fluorapatite under hydrostatic compression. Phys Chem Miner. doi: 10.1007/s00269-009-0340-0
  34. Schuster B, Lang M, Klein R, Trautmann C, Neumann R, Benyagoub A (2009) Structural phase transition in ZrO2 induced by swift heavy ion irradiation at high-pressure. Nucl Instrum Methods Phys Res B 267:964–968CrossRefGoogle Scholar
  35. Tisserand R, Rebetez M, Grivet M, Bouffard S, Benyagoub A, Levesque F, Carpena J (2004) Comparative amorphization quantification of two apatitic materials irradiated with heavy ions using XRD and RBS results. Nucl Instrum Methods Phys Res B 215:129–136CrossRefGoogle Scholar
  36. Toulemonde M (1995) Defect creation by swift heavy ions: material modifications in the electronic stopping power regime. Appl Radiat Isot 46:375–381CrossRefGoogle Scholar
  37. Toulemonde M, Dufour C, Meftah A, Paumier E (2000) Transient thermal processes in heavy ion irradiation of crystalline inorganic insulators. Nucl Instrum Methods Phys Res B 166:903–912CrossRefGoogle Scholar
  38. Trautmann C, Toulemonde M, Costantini JM, Grob JJ, Schwartz K (2000) Swelling effects in lithium fluoride induced by swift heavy ions. Phys Rev B 62:13–16CrossRefGoogle Scholar
  39. Trautmann C, Boccanfuso M, Benyagoub A, Klaumünzer S, Schwartz K, Toulemonde M (2002) Swelling of insulators induced by swift heavy ions. Nucl Instrum Methods Phys Res B 191:144–148CrossRefGoogle Scholar
  40. Tsuda H, Arends J (1994) Orientational micro-Raman spectroscopy on hydroxyapatite single crystals and human enamel crystallites. J Dent Res 73:1703–1710Google Scholar
  41. Vidal O, Wendt AS, Chadderton LT (2003) Further discussion on the pressure dependence of fission track annealing in apatite: reply to the critical comment of Kohn et al. Earth Planet Sci Let 215:307–316CrossRefGoogle Scholar
  42. Villa F, Grivet M, Rebetez M, Dubois C, Chambaudet A, Chevarier N, Martin P, Brossard F, Blondiaux G, Sauvage T, Toulemonde M (1999) Damage morphology of Kr ion tracks in apatite: dependence on dE/dx. Rad Meas 31:65–70CrossRefGoogle Scholar
  43. Villa F, Grivet M, Rebetez M, Dubois C, Chambaudet A, Chevarier N, Blondiaux G, Sauvage T, Toulemonde M (2000) Damage morphology of Kr ion tracks in apatite: dependence on thermal annealing. Nucl Instrum Methods Phys Res B 168:72–77CrossRefGoogle Scholar
  44. Wagner GA, van den Haute P (1992) Fission track dating. Ferdinand Enke Verlag, StuttgartGoogle Scholar
  45. Wang LM, Cameron M, Weber WJ, Crowley KD, Ewing RC (1993) In situ TEM observation of radiation induced amorphization of crystals with apatite structures. Spring Meeting of the Materials Research Society, San FranciscoGoogle Scholar
  46. Wang XB, Shen ZX, Tang SH, Kuok MH (1999) Near infrared excited micro-Raman spectra of 4:1 methanol–ethanol mixture and ruby fluorescence at high pressure. J Appl Phys 85:8011–8017CrossRefGoogle Scholar
  47. Weber WJ (2000) Models and mechanisms of irradiation-induced amorphization in ceramics. Nucl Instrum Methods Phys Res B 98:166–167Google Scholar
  48. Weber WJ, Ewing RC, Meldrum A (1997) The kinetics of alpha-decay-induced amorphization in zircon and apatite containing weapons-grade plutonium or other actinides. J Nucl Mater 250:147–155CrossRefGoogle Scholar
  49. Weber WJ, Ewing RC, Catlow CRA, de la Diaz Rubia T, Hobbs LW, Kinoshita C, Matzke HJ, Motta AT, Nastasi M, Salje EKH, Vance ER, Zinkle SJ (1998) Radiation effects in crystalline ceramics for the immobilization of high-level nuclear waste and plutonium. Mater Res 13(6):1434–1484CrossRefGoogle Scholar
  50. Wendt AS, Vidal O, Chadderton LT (2002) Experimental evidence for the pressure dependence of fission track annealing in apatite. Earth Planet Sci Lett 201:593–607CrossRefGoogle Scholar
  51. Wendt AS, Vidal O, Chadderton LT (2003) The effect of simultaneous temperature, pressure and stress on the experimental annealing of spontaneous fission tracks in apatite: a brief overview. Radiat Meas 36:339–342CrossRefGoogle Scholar
  52. Williams Q, Knittle E (1996) Infrared and Raman spectra of Ca5(PO4)3F-fluorapatite at high pressures: compression-induced changes in phosphate site and Davydov splitting. J Phys Chem Solids 57:417–422CrossRefGoogle Scholar
  53. Xie X, Minitti ME, Chen M, Mao HK, Wang D, Shu J, Fei Y (2003) Tuite, γ-Ca3(PO4)2: a new mineral from the Suizhou L6 chondrite. Eur J Miner 15:1001–1005CrossRefGoogle Scholar
  54. Young EJ, Myers AT, Munson EL, Conklin NM (1969) Mineralogy and geochemistry of fluorapatite from Cerro de Mercado, Durango, Mexico, US Geol Survey Prof Paper 650-D, pp D84–D93Google Scholar
  55. Zattin M, Bersani D, Carter A (2007) Raman microspectroscopy: a non-destructive tool for routine calibration of apatite crystallographic structure for fission-track analyses. Chem Geol 240:197–204CrossRefGoogle Scholar
  56. Ziegler JF, Biersack JP, Littmark U (1985) The stopping and range of ions in solids. Pergamon, New YorkGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Christian Weikusat
    • 1
    • 2
  • Ulrich A. Glasmacher
    • 1
  • Beatrice Schuster
    • 3
    • 4
  • Christina Trautmann
    • 3
  • Ronald Miletich
    • 1
  • Reinhard Neumann
    • 3
  1. 1.Institute of Earth SciencesUniversity of HeidelbergHeidelbergGermany
  2. 2.Alfred Wegener Institute for Polar and Marine ResearchBremerhavenGermany
  3. 3.GSI Helmholtz Centre for Heavy Ion ResearchDarmstadtGermany
  4. 4.Technische Universität DarmstadtDarmstadtGermany

Personalised recommendations