Physics and Chemistry of Minerals

, Volume 38, Issue 2, pp 111–122 | Cite as

Line-broadening effects in the powder infrared spectrum of apatite

  • Etienne Balan
  • Simon Delattre
  • Damien Roche
  • Loïc Segalen
  • Guillaume Morin
  • Maxime Guillaumet
  • Marc Blanchard
  • Michele Lazzeri
  • Christian Brouder
  • Ekhard K. H. Salje
Original Paper


The crystallinity of natural and synthetic apatite samples is often determined from the broadening of ν 4 PO4 infrared absorption bands. However, various physical mechanisms contribute to the observed linewidth. In the present study, the factors determining the linewidth in the powder spectrum of synthetic fluorapatite and hydroxyapatite samples are investigated. The temperature dependence of the infrared spectrum (10–270 K) is used to assess the respective contributions of homogeneous broadening, related to the decay of phonons through anharmonic coupling, and heterogeneous broadening related to elastic strain and macroscopic electrostatic effects. This latter contribution is dominant in the investigated samples and depends on the shape of powder particles. It is discussed under the light of the theoretical modeling of the low-frequency dielectric properties of apatite based on first-principles density functional theory calculations. The linewidth of the weak ν 1 PO4 absorption band provides a reliable information on microscopic sources of broadening, i.e., apatite crystallinity. In comparison, the other more intense PO4 bands are more sensitive to long-range electrostatic effects.


Apatite Infrared spectroscopy First-principles calculations Anharmonicity 



We thank Imene Machouk for her help in SEM observations. We gratefully acknowledge the technical support of F. Gélébart and M. Morand in the low-temperature measurements. This work was performed using HPC resources from GENCI-IDRIS (Grant 2009-i2009041519). Funding by the CNRS-INSU “INTERRVIE” program and UPMC “Emergence” program is acknowledged. This work is IPGP contribution 3048.


  1. Adams DM, Gardner IR (1974) Single-crystal vibrational spectra of apatite, vanadinite and mimetite. J. Chem Soc Dalton 14:1505–1509CrossRefGoogle Scholar
  2. Balan E, Saitta AM, Mauri F, Calas G (2001) First-principles modeling of the infrared spectrum of kaolinite. Am Mineral 86:1321–1330Google Scholar
  3. Balan E, Lazzeri M, Saitta AM, Allard T, Fuchs Y, Mauri F (2005) First-principles study of OH stretching modes in kaolinite, dickite and nacrite. Am Mineral 90:50–60CrossRefGoogle Scholar
  4. Balan E, Blanchard M, Hochepied J-F, Lazzeri M (2008) Surface modes of the infrared spectra of hydrous minerals: the OH stretching modes of bayerite. Phys Chem Miner 35:279–285CrossRefGoogle Scholar
  5. Balan E, Delattre S, Guillaumet M, Salje EKH (2010) Low-temperature infrared spectroscopic study of OH stretching modes in kaolinite and dickite. Am Mineral 95:1257–1266CrossRefGoogle Scholar
  6. Baroni S, de Gironcoli S, Dal Corso A, Giannozzi P (2001) Phonons and related crystal properties from density-functional perturbation theory. Rev Mod Phys 73:515–561CrossRefGoogle Scholar
  7. Corno M, Busco C, Civalleri B, Ugliengo P (2006) Periodic ab initio study of structural and vibrational features of hexagonal hydroxyapatite Ca10(PO4)6(OH)2. Phys Chem Chem Phys 8:2464–2472CrossRefGoogle Scholar
  8. Cowley RA (1968) Anharmonic crystals. Rep Prog Phys 31:123–166CrossRefGoogle Scholar
  9. Devarajan V, Klee WE (1981) A potential model for fluorapatite. Phys Chem Miner 7:35–42CrossRefGoogle Scholar
  10. Elliott JC (2002) Calcium phosphate biominerals. In: Kohn MJ, Rakovan J, Hughes JM (eds) Phosphates geochemical, geobiological and materials importance. Rev Miner Geochem 48:427–453Google Scholar
  11. Farmer VC (1974) The IR spectra of minerals. Mineral Society, LondonGoogle Scholar
  12. Fourdrin C, Balan E, Allard T, Boukari C, Calas G (2009) Induced modifications of kaolinite under ionizing radiation: an infrared spectroscopic study. Phys Chem Miner 36:291–299CrossRefGoogle Scholar
  13. Fuchs R (1975) Theory of the optical properties of ionic crystal cubes. Phys Rev B 11:1732–1740CrossRefGoogle Scholar
  14. Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti GL, Cococcioni M, Dabo I, Dal Corso A, de Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen AP, Smogunov A, Umari P, Wentzcovitch RM (2009) Quantum ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys Condens Matter 21:395502CrossRefGoogle Scholar
  15. Gonze X, Lee C (1997) Dynamical matrices, Born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory. Phys Rev B 55:10355–10368CrossRefGoogle Scholar
  16. Gross KA, Berndt CC (2002) Biomedical applications of apatites. In: Kohn MJ, Rakovan J, Hughes JM (eds) Phosphates geochemical, geobiological and materials importance. Rev Miner Geochem 48:631–672Google Scholar
  17. Haverty D, Tofail SAM, Stanton KT, McMonagle JB (2005) Structure and stability of hydroxyapatite: density functional calculation and Rietveld analysis. Phys Rev B 71:094103–094109CrossRefGoogle Scholar
  18. Hughes JM, Rakovan J (2002) The crystal structure of apatite, Ca5(PO4)3(F,OH,Cl). In: Kohn MJ, Rakovan J, Hughes JM (eds) Phosphates geochemical, geobiological and materials importance. Rev Miner Geochem 48:1–12Google Scholar
  19. Hughes JM, Cameron M, Crowley KD (1989) Structural variations in natural F, OH, and Cl apatites. Am Miner 74:870–876Google Scholar
  20. Ikeya M (1993) New applications of electron spin resonance. Dating, dosimetry and microscopy. World Scientific Publishing Co. Pvt. Ltd., SingaporeGoogle Scholar
  21. Knudsen AC, Gunter ME (2002) Sedimentary phosphates—an example: phosphoria formation, Southern Idaho, USA. In: Kohn MJ, Rakovan J, Hughes JM (eds) Phosphates geochemical, geobiological and materials importance. Rev Miner Geochem 48:363–389Google Scholar
  22. Lazzeri M, Calandra M, Mauri F (2003) Anharmonic frequency shift in MgB2. Phys Rev B 68:220509CrossRefGoogle Scholar
  23. Lebon M, Reiche I, Bahain J-J, Chadefaux C, Moigne A-M, Fröhlich F, Sémah F, Schwarcz HP, Falguères C (2010) New parameters for the characterization of diagenetic alterations and heat-induced changes of fossil bone mineral using Fourier transform infrared spectrometry. J Archaeol Sci 37:2265–2276CrossRefGoogle Scholar
  24. Lee WT, Dove MT, Salje EKH (2000) Surface relaxations in hydroxyapatite J. Phys Condens Matter 12:9829–9841CrossRefGoogle Scholar
  25. Menéndez J, Cardona M (1984) Temperature dependence of the first-order Raman scattering by phonons in Si, Ge, and α-Sn: anharmonic effects. Phys Rev B 29:2051–2059CrossRefGoogle Scholar
  26. Michel V, Ildefonse P, Morin G (1995) Chemical and structural changes in Cervus elaphus tooth enamels during fossilization (Lazaret cave): a combined IR and XRD Rietveld analysis. Appl Geochem 10:145–159CrossRefGoogle Scholar
  27. Michel V, Ildefonse P, Morin G (1996) Assessment of archaeological bone and dentine preservation from Lazaret Cave (Middle Pleistocene) in France. Palaeogeogr Palaeoclimatol Palaeoecol 126:109–119CrossRefGoogle Scholar
  28. Morin G, Allard T, Balan E, Ph Ildefonse, Calas G (2002) Native Cd+ in sedimentary fluorapatite. Eur J Miner 14:1087–1094CrossRefGoogle Scholar
  29. Nounah A, Lacout JL (1993) Thermal behavior of cadmium containing apatites. J Solid State Chem 107:444–451CrossRefGoogle Scholar
  30. Pan Y, Fleet M (2002) Compositions of the apatite-group minerals: substitution mechanisms and controlling factors. In: Kohn MJ, Rakovan J, Hughes JM (eds) Phosphates geochemical, geobiological and materials importance. Rev Miner Geochem 48:13–49Google Scholar
  31. Pedone A, Corno M, Civalleri B, Malavasi G, Menziani MC, Segrea U, Ugliengo P (2007) An ab initio parameterized interatomic force field for hydroxyapatite. J Mater Chem 17:2061–2068CrossRefGoogle Scholar
  32. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868CrossRefGoogle Scholar
  33. Picard S, Garcia JP, Lecuyer C, Sheppard SMF, Cappetta H, Emig CC (1998) δ18O values of coexisting brachiopods and fish: temperature differences and estimates of paleo-water depths. Geology 26:975–978CrossRefGoogle Scholar
  34. Piccoli PM, Candela PA (2002) Apatite in igneous systems. In: Kohn MJ, Rakovan J, Hughes JM (eds) Phosphates geochemical, geobiological and materials importance. Rev Miner Geochem 48:255–292Google Scholar
  35. Pucéat E, Reynard B, Lécuyer C (2004) Can crystallinity be used to determine the degree of chemical alteration of biogenic apatites? Chem Geol 205:83–97CrossRefGoogle Scholar
  36. Rey C, Shimizu M, Collins B, Glimcher MJ (1990) Resolution-enhanced Fourier transform infrared spectroscopy study of the environment of phosphate ions in the early deposit of a solid phase of calcium-phosphate in bone and enamel, and their evolution with age. I. Investigations in the ν4 PO4 domain. Calcif Tissue Int 46:384–394CrossRefGoogle Scholar
  37. Reynard B, Lecuyer C, Grandjean P (1999) Crystal-chemical controls on rare-earth elements concentration in fossil biogenic apatites and implications for paleo-environmental reconstructions. Chem Geol 155:233–241CrossRefGoogle Scholar
  38. Roche D, Segalen L, Balan E, Delattre S (2010) Preservation assessment of Miocene–Pliocene tooth enamel from Tugen Hills (Kenyan Rift Valley) through FTIR, chemical and stable-isotope analysis. J Archaeol Sci 37:1690–1699CrossRefGoogle Scholar
  39. Ruppin R (1977) Infrared absorption in sphéroïdal crystallites. Surf Sci 62:206–214CrossRefGoogle Scholar
  40. Ruppin R (1978) Infrared absorption in rectangular crystallites. Opt Commun 26:360–362CrossRefGoogle Scholar
  41. Salje EKH, Bismayer U (1997) Hard mode spectroscopy: the concept and applications. Phase Transitions 63:1–75CrossRefGoogle Scholar
  42. Salje EKH, Wruck B, Thomas H (1991a) Order parameter saturation and low-temperature expansion of Landau theory. Z Phys 82:399–404CrossRefGoogle Scholar
  43. Salje EKH, Wruck B, Marais S (1991b) Order parameter saturation at low temperatures—numerical results for displacive and O/D systems. Ferroelectrics 124:185–188Google Scholar
  44. Salje EKH, Carpenter MA et al (2000) Autocorrelation analysis of infrared spectra from minerals. Eur J Miner 12(3):503–519Google Scholar
  45. Samara GA, Morosin B (1973) Anharmonic effects in KTaO3: ferroelectric mode, thermal expansion, and compressibility. Phys Rev B 3:1256–1264CrossRefGoogle Scholar
  46. Scott JF (1974) Soft-mode spectroscopy: experimental studies of structural phase transitions. Rev Mod Phys 46:83–128CrossRefGoogle Scholar
  47. Shemesh A (1990) Crystallinity and diagenesis of sedimentary apatite. Geochim Cosmochim Acta 54:2433–2438CrossRefGoogle Scholar
  48. Sponheimer M, Lee-Thorp JA (1999) Alteration of enamel carbonate environments during fossilization. J Archaeol Sci 26:143–150CrossRefGoogle Scholar
  49. Surovell TA, Stiner MC (2001) Standardizing infra-red measures of bone mineral crystallinity: an experimental approach. J Archaeol Sci 28:633–642CrossRefGoogle Scholar
  50. Weiner S, Bar-Yosef O (1990) States of preservation of bones from prehistoric sites in the Near East: a survey. J Archaeol Sci 17:187–196CrossRefGoogle Scholar
  51. Yagil Y, Baudenbacher F, Zhang M, Birch JR, Kinder H, Salje EKH (1995) Optical properties of YBa2Cu3O7-d thin films. Phys Rev B 52:15582–15591CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Etienne Balan
    • 1
  • Simon Delattre
    • 1
  • Damien Roche
    • 2
  • Loïc Segalen
    • 2
  • Guillaume Morin
    • 1
  • Maxime Guillaumet
    • 1
  • Marc Blanchard
    • 1
  • Michele Lazzeri
    • 1
  • Christian Brouder
    • 1
  • Ekhard K. H. Salje
    • 3
  1. 1.Institut de Minéralogie et Physique des Milieux Condensés (IMPMC), UMR CNRS 7590, UMR IRD 206Université Paris VI, Université Paris VII, IPGPParisFrance
  2. 2.UPMC Univ Paris 06, UMR 7193 ISTEP, Biominéralisations et Environnements SédimentairesParisFrance
  3. 3.Department of Earth SciencesUniversity of CambridgeCambridgeUK

Personalised recommendations