Physics and Chemistry of Minerals

, Volume 38, Issue 1, pp 21–31 | Cite as

Elasticity of CaIrO3 with perovskite and post-perovskite structure

Original Paper

Abstract

Compression behaviors of CaIrO3 with perovskite (Pv) and post-perovskite (pPv) structures have been investigated up to 31.0(1.0) and 35.3(1) GPa at room temperature, respectively, in a diamond-anvil cell with hydrostatic pressure media. CaIrO3 Pv and pPv phases were compressed with the axial compressibility of β a > β c > β b and β b > β a > β c, respectively and no phase transition was observed in both phases up to the highest pressure in the present study. The order of axial compressibility for pPv phase is consistent with the crystallographic consideration for layer structured materials and previous experimental results. On the other hand, Pv phase shows anomalous compression behavior in b axis, which exhibit constant or slightly expanded above 13 GPa, although the applied pressure remained hydrostatic. Volume difference between Pv and pPv phases was gradually decreased with increasing pressure and this is consistent with the results of theoretical study based on the ab initio calculation. Present results, combined with theoretical study, suggest that these complicate compression behaviors in CaIrO3 under high pressure might be caused by the partially filled electron of Ir4+. Special attention must be paid in case of using CaIrO3 as analog materials to MgSiO3, although CaIrO3 exhibits interesting physical properties under high pressure.

Keywords

CaIrO3 Perovskite Post-perovskite Diamond-anvil cell Elasticity High pressure 

Notes

Acknowledgments

The authors would like to thank T. Okada, A. Sano-Furukawa, M. Hasegawa and N. Funamori for their useful discussion. We also acknowledge the technical support of H. Gotou for high pressure synthesis and Y. Kiuchi for SEM–EDS operation. We would like to thank two anonymous reviewers for their improvement in our manuscript.

References

  1. Anderson DL, Anderson OL (1970) The bulk modulus–volume relationship for oxides. J Geophys Res 75:3494–3499CrossRefGoogle Scholar
  2. Ballaran TB, Trønnes RG, Frost DJ (2007) Equation of state of CaIrO3 perovskite and post-perovskite phases. Am Miner 92:1760–1763CrossRefGoogle Scholar
  3. Chai M, Brown M (1996) Effects of static non-hydrostatic stress on the R lines of ruby single crystals. Geophys Res Lett 24:3539–3542CrossRefGoogle Scholar
  4. Fiquet G, Andrault D, Dewaele A, Charpin T, Kunz M, Housermann D (1998) P–V–T equation of state of MgSiO3 perovskite. Phys Earth Planet Int 105:21–31CrossRefGoogle Scholar
  5. Fiquet G, Dewaele A, Andrault D, Kunz M, Bihan TL (2000) Thermoelastic properties and crystal structure of MgSiO3 perovskite at lower mantle pressure and temperature conditions. Geophys Res Lett 27:21–24CrossRefGoogle Scholar
  6. Fujihisa H (1999) An X-ray powder pattern analysis program for imaging plate. Rev High Press Sci 9:65–70Google Scholar
  7. Guignot N, Andrault D, Marard G, Bolfan-Casanova N, Mezouar M (2007) Thermoelastic properties of post-perovskite phase MgSiO3 determined experimentally at core-mantle boundary P–T conditions. Earth Planet Sci Lett 256:162–168CrossRefGoogle Scholar
  8. Hirose K, Fujita Y (2005) Clapeyron slope of the post-perovskite phase transition in CaIrO3. Geophys Res Lett 32:L13313CrossRefGoogle Scholar
  9. Hirose K, Kawamura K, Ohishi Y, Tateno S, Sata N (2005) Stability and equation of state of MgGeO3 post-perovskite. Am Mineral 90:262–265CrossRefGoogle Scholar
  10. Iitaka T, Hirose K, Kawamura K, Murakami M (2004) The elasticity of the MgSiO3 post-perovskite phase in the earth’s lowermost mantle. Nature 430:442–445CrossRefGoogle Scholar
  11. Kojitani H, Furukawa A, Akaogi M (2007a) Thermochemistry and high-pressure equilibria of the post-perovskite phase transition in CaIrO3. Am Mineral 92:229–232CrossRefGoogle Scholar
  12. Kojitani H, Shirako Y, Akaogi M (2007b) Post-perovskite phase transition in CaRuO3. Phys Earth Planet Lett 165:127–134CrossRefGoogle Scholar
  13. Kubo A, Kiefer B, Shen G, Prakapenka VB, Cava RJ, Duffy TS (2006) Stability and equation of state of the post-perovskite phase in MgGeO3 to 2 Mbar. Geophys Res Lett 33:L12S12Google Scholar
  14. Kubo A, Kiefer B, Shim S-H, Shen G, Prakapenka RJ, Duffy TS (2008) Rietveld structure refinement of MgGeO3 post-perovskite phase to 1 Mbar. Am Mineral 93:965–976CrossRefGoogle Scholar
  15. Kung J, Angel RJ, Ross NL (2001) Elasticity of CaSnO3 perovskite. Phys Chem Miner 28:35–43CrossRefGoogle Scholar
  16. Lao I, Adler P, Grzechnik A, Syassen K, Schwarz U, Hanfland M, Rozenberg GKh, Gorodetsky P, Pasternak MP (2001) Pressure-induced quenching of the Jahn–Teller distortion and insulator-to-metal transition in LaMnO3. Phys Rev Lett 87:125501CrossRefGoogle Scholar
  17. Mao HK, Xu J, Bell PM (1986) Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. J Geophys Res 91:4673–4676CrossRefGoogle Scholar
  18. Martin CD, Chapman KW, Chupas PJ, Prakapenka V, Lee PL, Shastri SD, Parise JB (2007a) Compression, thermal expansion, structure, and instability of CaIrO3, the structure model of MgSiO3 post-perovskite. Am Mineral 92:1048–1053CrossRefGoogle Scholar
  19. Martin CD, Smith RI, Marshall WG, Parise JB (2007b) High-pressure structure and bonding in CaIrO3: the structure model of MgSiO3 post-perovskite investigated with time-of-flight neutron powder diffraction. Am Mineral 92:1912–1918CrossRefGoogle Scholar
  20. McDaniel CL, Schneider SJ (1972) Phase relations in the CaO–IrO2–Ir system in air. J Solid State Chem 4:275–280CrossRefGoogle Scholar
  21. Min L, Manghnani MH (1979) Isothermal compression of TiO2(rutile) under hydrostatic pressure to 106 kba. J Geophys Res Lett 84:4777–4779CrossRefGoogle Scholar
  22. Murakami M, Hirose K, Kawamura K, Sata N, Ohishi Y (2004) Post-perovskite phase transition in MgSiO3. Science 304:855–858CrossRefGoogle Scholar
  23. Niwa K, Yagi T, Ohgushi K, Merkel S, Miyajima N, Kikegawa T (2007) Lattice preferred orientation in CaIrO3 perovskite and post-perovskite formed by plastic deformation under pressure. Phys Chem Miner 34:679–686CrossRefGoogle Scholar
  24. Ohgushi K, Gotou H, Yagi T, Kiuchi Y, Sakai F, Ueda U (2006) Metal-insulator transition in Ca1−xNaxIrO3 with post-perovskite structure. Phys Rev B 74:241104CrossRefGoogle Scholar
  25. Ohgushi K, Matsushita Y, Miyajima N, Katsuya Y, Tanaka M, Izumi F, Gotou H, Ueda Y, Yagi T (2007) CaPtO3 as a novel post-perovskite oxide. Phys Chem Miner 35:189–195CrossRefGoogle Scholar
  26. Ono S, Kikegawa T, Ohishi Y (2006) Equation of state of CaIrO3-type MgSiO3 up to 144 GPa. Am Mineral 91:475–478CrossRefGoogle Scholar
  27. Piermarini GJ, Block S, Barnett JD (1973) Hydrostatic limits in liquids and solids to 100 kbar. J Appl Phys 44:5377–5382CrossRefGoogle Scholar
  28. Ross NL, Angel RJ (1999) Compression of CaTiO3 and CaGeO3 perovskite. Am Mineral 84:277–281Google Scholar
  29. Ross NL, Chaplin TD (2003) Compressibility of CaZrO3 perovskite: Comparison with Ca-oxide perovskites. J Solid State Chem 172:123–136CrossRefGoogle Scholar
  30. Ross NL, Hazen RM (1990) High-pressure crystal chemistry of MgSiO3 prevskite. Phys Chem Miner 17:228–237CrossRefGoogle Scholar
  31. Ross NL, Shu JF, Hazen RM (1990) High-pressure crystal chemistry of stishovite. Am Mineral 75:739–747Google Scholar
  32. Runge CE, Kubo A, Kiefer B, Meng Y, Prakapenka VB, Shen G, Cava RJ, Duffy TS (2006) Equation of state of MgGeO3 perovskite to 65 GPa: comparison with the post-perovskite phase. Phys Chem Miner 33:699–709CrossRefGoogle Scholar
  33. Shannon RD, Prewitt CT (1969) Effective ionic radii in oxides and fluorides. Acta Cryst B 25:925–945CrossRefGoogle Scholar
  34. Shieh SR, Duffy TS, Kubo A, Shen G, Prakapenka VB, Sata N, Ohishi Y (2006) Equation of state of the postpervskite phase synthesized from a natural (Mg, Fe)SiO3 orthopyroxene. Proc Natl Acad Sci USA 103:3039–3043CrossRefGoogle Scholar
  35. Shim S-H, Duffy T, Shen G (2000) The stability and P–V–T equation of state of CaSiO3 perovskite in the Earth’s lower mantle. J Geophys Res 105:25955–25968CrossRefGoogle Scholar
  36. Sugahara M, Yoshiasa A, Komatsu Y, Yamanaka T, Bolfan-Casanova N, Nakatsuka A, Sasaki S, Tanaka M (2006) Reinvestigation of the MgSiO3 perovskite structure at high pressure. Am Mineral 91:533–536CrossRefGoogle Scholar
  37. Takemura K (2001) Evaluation of the hydrostaticity of a helium-pressure medium with powder X-ray diffraction techniques. J Appl Phys 89:662–668CrossRefGoogle Scholar
  38. Tateno S, Hirose K, Sata N, Ohishi Y (2006) High-pressure behavior of MnGeO3 and CdGeO3 perovskites and the post-perovskite phase transition. Phys Chem Miner 32:721–725CrossRefGoogle Scholar
  39. Tsuchiya T, Tsuchiya J (2007) Structure and elasticity of Cmcm CaIrO3 and their pressure dependences: ab initio calculations. Phys Rev B 76:1–144119Google Scholar
  40. Vanpeteghem CB, Zhao J, Angel RJ, Ross NL, Bolfan-Casanova N (2006) Crystal structure and equation of state of MgSiO3 perovskite. Geophys Res Lett 33:L03306. doi: 1029/2005GL024955
  41. Walte N, Heidelbach F, Miyajima N, Frost D (2007) Texture development and TEM analysis of deformed CaIrO3: implications for the D″ layer at the core-mantle boundary. Geophys Res Lett 34. doi: 10.1029/2007GL029407
  42. Yagi T, Yusa H, Yamakata M (1996) An apparatus to load gaseous materials to the diamond-anvil cell. Rev Sci Inst 67:2981CrossRefGoogle Scholar
  43. Yagi T, Okabe K, Nnishiyama N, Kubo A, Kikegawa T (2004) Complicated effects of aluminium on the compressibility of silicate perovskite. Phys Earth Planet Int 143–144:81–91CrossRefGoogle Scholar
  44. Yagi T, Iida E, Hirai H, Miyajima N, Kikegawa T, Bunno M (2007) High-pressure behavior of a SiO2 clathrate observed by using various pressure media. Phys Rev B 75:174115CrossRefGoogle Scholar
  45. Yamazaki D, Yoshino T, Ohfuji H, Ando J, Yoneda A (2006) Origin of seismic anisotropy in the D″ layer inferred from shear deformation experiments on post-perovskite phase. Earth Planet Sci Lett 252:372–378CrossRefGoogle Scholar
  46. Zhao J, Ross NL, Angel RJ (2004) Tilting and distortion of CaSnO3 perovskite to 7 GPa determined from single-crystal X-ray diffraction. Phys Chem Miner 31:299–305CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Institute for Solid State PhysicsUniversity of TokyoKashiwaJapan
  2. 2.Department of Materials Science and EngineeringNagoya UniversityNagoyaJapan

Personalised recommendations