Physics and Chemistry of Minerals

, Volume 37, Issue 10, pp 751–760 | Cite as

Volume diffusion of Ytterbium in YAG: thin-film experiments and combined TEM–RBS analysis

  • Katharina MarquardtEmail author
  • Elena Petrishcheva
  • Rainer Abart
  • Emmanuel Gardés
  • Richard Wirth
  • Ralf Dohmen
  • Hans-Werner Becker
  • Wilhelm Heinrich
Original Paper


In this study, we address volume diffusion of ytterbium in yttrium aluminum garnet (YAG) using thin-film single crystal diffusion couples. We employ analytical transmission electron microscopy (ATEM) as a tool for combined microstructural and microchemical analysis and compare the results to Rutherford backscattering (RBS) analysis. Given the high spatial resolution of the method, we focus on microstructural changes of the thin-film diffusant source during the diffusion anneal. We evaluate the potential influence of the associated changes in its transport properties on the evolution of concentration profiles in the single crystal substrate. This approach allows us to test the reliability of determination of volume diffusion coefficients from thin-film diffusion experiments. We found that for the chosen experimental setting, the influence of thin-film re-crystallization is small when compared with the experimental uncertainty and good estimates for the volume diffusion coefficients of Yb in YAG can be obtained using standard assumptions. Both Yb-concentration profiles analyzed with ATEM and with RBS give similar results. At 1,450°C and 1 bar, we infer log D Yb (m2/s) values of −19.37 ± 0.07 (TEM) and −19.84 ± 0.02 (RBS). Although the change in thin-film transport properties associated with successive crystallization during the diffusion anneal does not play a major role for our experimental setup, this effect cannot generally be ignored.


Diffusion TEM YAG Thin-film ATEM Analytical transmission electron microscopy 



The authors like to thank the programmers (H. Demers, P. Horny, R. Gauvin, E. Lifshin) of the Monte Carlo program Win X-Ray, which is an extension of the well-known program CASINO. K. M. thanks Hauke Marquardt for extensive discussions.


  1. Abart R, Kunze K, Milke R, Sperb R, Heinrich W (2004) Silicon, oxygen self diffusion in enstatite polycrystals; the Milke et al (2001) rim growth experiments revisited. Contrib Mineral Petrol 147:633–646CrossRefGoogle Scholar
  2. Abart R, Petrishcheva E, Fischer FD, Svoboda J (2009) Thermodynamic model for diffusion controlled reaction rim growth in a binary system; application to the forsterite-enstatite-quartz system. Am J Sci 309:114–131CrossRefGoogle Scholar
  3. Béjina F, Jaoul O, Liebermann RC (2003) Diffusion in minerals at high pressure: a review. Phys Earth Planet Inter 139:3–20CrossRefGoogle Scholar
  4. Cherniak DJ (1998) Rare earth element and gallium diffusion in yttrium aluminum garnet. Phys Chem Miner 26:156–163CrossRefGoogle Scholar
  5. Chrisey DB, Hubler GK (2003) Pulsed laser deposition of thin films. Wiley, New York, p 648Google Scholar
  6. Cliff G, Lorimer GW (1975) The quantitative analysis of thin specimens. J Microsc 103:203–207Google Scholar
  7. Constable S, Duba A (2002) Diffusion and mobility of electrically conducting defects in olivine. Phys Chem Miner 29:446–454CrossRefGoogle Scholar
  8. Crank J (1975) The mathematics of diffusion. Oxford University Press, New YorkGoogle Scholar
  9. Czochralski J (1918) Ein neues Verfahren zur Messung der Kristallisationsgeschwindigkeit der Metalle. Z Phys Chem 92:219–221Google Scholar
  10. Dobrzycki L, Bulska E, Pawlak DA, Frukacz Z, Wozniak K (2004) Structure of YAG crystals doped/substituted with erbium and ytterbium. Inorg Chem 43:7656–7664CrossRefGoogle Scholar
  11. Dobson DP, Dohmen R, Wiedenbeck M (2008) Self-diffusion of oxygen and silicon in MgSiO3 perovskite. Earth Planet Sci Lett 270:125–129CrossRefGoogle Scholar
  12. Dohmen R, Becker H-W, Meißner E, Etzel T, Chakraborty S (2002) Production of silicate thin films using pulsed laser deposition (PLD) and applications to studies in mineral kinetics. Eur J Miner 14:1155–1168CrossRefGoogle Scholar
  13. Dohmen R, Becker H-W, Chakraborty S (2007) Fe–Mg diffusion in olivine I: experimental determination between 700 and 1, 200°C as a function of composition, crystal orientation and oxygen fugacity. Phys Chem Miner 34:389–407CrossRefGoogle Scholar
  14. Feldman LC, Mayer JW (1986) Fundamentals of surface and thin film analysis. Prentice Hall, USAGoogle Scholar
  15. Fiddicke J, Oelgart G (1985) The importance of the excitation volume for the determination of the minority carrier diffusion length. Physica Status Solidi A Appl Res 87:383–389CrossRefGoogle Scholar
  16. Ganguly J, Cheng W, Chakraborty S (1998) Cation diffusion in aluminosilicate garnets: experimental determination in pyrope-almandine diffusion couples. Contrib Miner Petrol 131:171–180CrossRefGoogle Scholar
  17. Gardés E, Montel J-M (2009) Opening and resetting temperatures in heating geochronological systems. Contrib Miner Petrol 158:185–195. doi: 10.1007/s00410-009-0377-6 CrossRefGoogle Scholar
  18. Gardés E, Jaoul O, Montel J-M, Seydoux-Guillaume A-M, Wirth R (2006) Pb diffusion in monazite; an experimental study of Pb2+ Th4+ > 2Nd3+ interdiffusion. Geochim Cosmochim Acta 70:2325–2336CrossRefGoogle Scholar
  19. Gardés E, Montel J-M, Seydoux-Guillaume A-M, Wirth R (2007) Pb diffusion in monazite; an experimental study of Pb2+ < – > Ca2+ interdiffusion. Geochim Cosmochim Acta 71:4036–4043CrossRefGoogle Scholar
  20. Geusic JE, Marcos HM, Van Uitert LG (1964) Laser Oscillations in Nd-doped yttrium aluminum, yttrium gallium and gadolinium garnets. Appl Phys Lett 4:182–184CrossRefGoogle Scholar
  21. Hartmann K, Wirth R, Heinrich W (2010) Synthetic near Σ5 (210)/[100] grain boundary in YAG fabricated by direct bonding: structure and stability. Phys Chem Miner 37:291-300. doi: 10.1007/s00269-009-0333-z CrossRefGoogle Scholar
  22. Hofmann S (1998) Sputter depth profile analysis of interfaces. Rep Prog Phys 61:827–888CrossRefGoogle Scholar
  23. Humphreys FJ, Hatherly M (1996) Recrystallization and related annealing phenomena. Pergamon, OxfordGoogle Scholar
  24. Ikesue A, Aung YL (2006) Synthesis and performance of advanced ceramic lasers. J Am Ceram Soc 89:1936–1944CrossRefGoogle Scholar
  25. Ikesue A, Kamata K, Yoshida K (1996) Effects of neodymium concentration on optical characteristics of polycrystalline Nd:YAG laser materials. J Am Ceram Soc 79:1921–1926CrossRefGoogle Scholar
  26. Jaoul O, Béjina F (2005) Empirical determination of diffusion coefficients and geospeedometry. Geochim Cosmochim Acta 69:1027–1040CrossRefGoogle Scholar
  27. Jaoul O, Sautter V, Abel F (1991) Nuclear microanalysis; a powerful tool for measuring low atomic diffusivity with mineralogical applications. Adv Phys Geochem 8:198–220Google Scholar
  28. Jiménez-Melendo M, Haneda H, Nozawa H (2001) Ytterbium cation diffusion in yttrium aluminum garnet (YAG): implications for creep mechanisms. J Am Ceram Soc 84:2356–2360CrossRefGoogle Scholar
  29. Kaur I, Mishin Y, Gust W (1995) Fundamentals of grain and interphase boundary diffusion. Wiley, ChichesterGoogle Scholar
  30. Kótai E (1994) Computer methods for analysis and simulation of RBS and ERDA spectra. Nucl Instrum Methods Phys Res B 85:588–596CrossRefGoogle Scholar
  31. Kuklja MM (2000) Defects in yttrium aluminium perovskite and garnet crystals: atomistic study. J Phys Condens Matter 12:2953CrossRefGoogle Scholar
  32. Kuklja MM, Pandey R (1999) Atomistic modeling of native point defects in yttrium aluminum garnet crystals. J Am Ceram Soc 82:2881–2886CrossRefGoogle Scholar
  33. Lasaga AC (1979) Multicomponent exchange and diffusion in silicates. Geochem Cosmochem Acta 43:455–469CrossRefGoogle Scholar
  34. Lee MR, Bland PA, Graham G (2003) Preparation of TEM samples by focused ion beam (FIB) techniques; applications to the study of clays and phyllosilicates in meteorites. Miner Mag 67:581–592CrossRefGoogle Scholar
  35. Lee MR, Brown DJ, Smith CL, Hodson ME, MacKenzie M, Hellmann R (2007) Characterization of mineral surfaces using FIB and TEM: a case study of naturally weathered alkali feldspars. Am Miner 92:1383–1394CrossRefGoogle Scholar
  36. Lee MR, Brown DJ, Hodson ME, MacKenzie M, Smith CL (2009) Weathering microenvironments on feldspar surfaces: implications for understanding fluid-mineral reactions in soils. Miner Mag 72:1319–1328CrossRefGoogle Scholar
  37. Lu J, Prabhu M, Song J, Li C, Xu J, Ueda K, Kaminskii AA, Yagi H, Yanagitani T (2000) Optical properties and highly efficient laser oscillation of Nd:YAG ceramics. Appl Phys B Lasers Opt 71:469–473CrossRefGoogle Scholar
  38. Lu J, Ueda K-I, Yagi H, Yanagitani T, Akiyama Y, Kaminskii AA (2002) Neodymium doped yttrium aluminum garnet (Y3Al5O12) nanocrystalline ceramics—a new generation of solid state laser and optical materials. J Alloy Compd 341:220–225CrossRefGoogle Scholar
  39. Lupei V, Lupei A, Pavel N, Taira T, Ikesue A (2001) Comparative investigation of spectroscopic and laser emission characteristics under direct 885-nm pump of concentrated Nd:YAG ceramics and crystals. Appl Phys B Lasers Opt 73:757–762CrossRefGoogle Scholar
  40. Marquardt H, Ganschow S, Schilling F (2009) Thermal diffusivity of natural and synthetic garnet solid solution series. Phys Chem Miner 36:107–118CrossRefGoogle Scholar
  41. Meissner E, Sharp TG, Chakraborty S (1998) Quantitative measurement of short compositional profiles using analytical transmission electron microscopy. Am Miner 83:546–552Google Scholar
  42. Milke R, Abart R, Kunze K, Koch M, Ller M, Schmid D, Ulmer P (2009) Matrix rheology effects on reaction rim growth I: evidence from orthopyroxene rim growth experiments. J Met Geol 27:71–82CrossRefGoogle Scholar
  43. Overwijk MHF, van den Heuvel FC, Bulle-Lieuwma CWT (1993) Novel scheme for the preparation of transmission electron microscopy specimens with a focused ion beam. J Vac Sci Technol B 11:2021–2024CrossRefGoogle Scholar
  44. Pavel N, Lupei V, Saikawa J, Taira T, Kan H (2006) Neodymium concentration dependence of 0.94-, 1.06- and 1.34-μm laser emission and of heating effects under 809- and 885-nm diode laser pumping of Nd:YAG. Appl Phys B Lasers Opt 82:599–605CrossRefGoogle Scholar
  45. Peters MI, Reimanis IE (2003) Grain boundary grooving studies of yttrium aluminum garnet (YAG) bicrystals. J Am Ceram Soc 86:870–872CrossRefGoogle Scholar
  46. Phaneuf MW (1999) Applications of focused ion beam microscopy to materials science specimens. Micron 30:277–288CrossRefGoogle Scholar
  47. Schmid DW, Abart R, Podladchikov YY, Milke R (2009) Matrix rheology effects on reaction rim growth II: coupled diffusion and creep model. J Met Geol 27:83–91CrossRefGoogle Scholar
  48. Shannon R (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr Sec A 32:751–767CrossRefGoogle Scholar
  49. Tirone M, Ganguly J, Dohmen R, Langenhorst F, Hervig R, Becker H-W (2005) Rare earth diffusion kinetics in garnet: experimental studies and applications. Geochim Cosmochim Acta 69:2385–2398CrossRefGoogle Scholar
  50. Weber R, Abadie J (2001) Processing and optical properties of YAG- and rare-earth-aluminum oxide-composition glass fibers. Mater Res Soc 702:193–204Google Scholar
  51. Williams DB, Carter BC (1996) Transmission electron microscopy. Springer, New York, p 729Google Scholar
  52. Wirth R (2004) Focused ion beam (FIB): a novel technology for advanced application of micro- and nanoanalysis in geosciences and applied mineralogy. Eur J Mineral 16:863–876CrossRefGoogle Scholar
  53. Yin H, Deng P, Gan F (1998) Defects in YAG:Yb crystals. J Appl Phys 83:3825–3828CrossRefGoogle Scholar
  54. Young Chul S, Bum Jun K, Dong Hoon K, Young Min K, Tae Geun K (2006) Investigation of Zn diffusion by SIMS and its effects on the performance of AlGaInP-based red lasers. Semicond Sci Technol 21:35CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Katharina Marquardt
    • 1
    Email author
  • Elena Petrishcheva
    • 2
  • Rainer Abart
    • 2
    • 4
  • Emmanuel Gardés
    • 1
  • Richard Wirth
    • 1
  • Ralf Dohmen
    • 3
    • 6
  • Hans-Werner Becker
    • 5
  • Wilhelm Heinrich
    • 1
  1. 1.German Research Centre for Geosciences GFZ, Section 3.3PotsdamGermany
  2. 2.Institute for Geological SciencesFreie Universität BerlinBerlinGermany
  3. 3.Institut für Geologie, Mineralogie und GeophysikRuhr-Universität BochumBochumGermany
  4. 4.Department for Lithosphere ResearchUniversity of ViennaViennaAustria
  5. 5.Fakultät für Physik und AstronomieRuhr-Universität BochumBochumGermany
  6. 6.Department of Earth Sciences, Wills Memorial BuildingUniversity of BristolBristolUK

Personalised recommendations