Physics and Chemistry of Minerals

, Volume 37, Issue 10, pp 711–720 | Cite as

Peierls–Nabarro modelling of dislocations in diopside

  • Arnaud Metsue
  • Philippe Carrez
  • Christophe Denoual
  • David Mainprice
  • Patrick Cordier
Original Paper

Abstract

The core structures of dislocations in diopside have been calculated within the Peierls model, which assumes a planar core. 1/2<110> dislocations can dissociate into two collinear partial dislocations. We show that [001] glide is very difficult in (010) and that a non-collinear dissociation of [001](100) (modelled within a Peierls–Nabarro–Galerkin approach) makes glide equally easy in (100) and {110}. A widely spread core structure corresponding to a low lattice friction has been found for [100](010) and [010](100) dislocations which is not supported by mechanical data and, together with TEM observations, suggests that another, probably non-planar core structure is possible for these dislocations.

Keywords

Clinopyroxenes Diopside Deformation mechanisms Dislocation core Slip systems Empirical potentials Peierls–Nabarro model 

References

  1. Amiguet E, Raterron P, Cordier P, Couvy H, Chen J (2009) Deformation of diopside single crystal at mantle pressure, 1: mechanical data. Phys Earth Planet Int 177:122–129CrossRefGoogle Scholar
  2. Amiguet E, Cordier P, Raterron P (2010) Deformation of diopside single crystals at mantle pressure 2: TEM characterization of dislocation microstructures. Eur J Mineral 22(2):181–187Google Scholar
  3. Bascou J, Tommasi A, Mainprice D (2002) Plastic deformation and development of clinopyroxene lattice preferred orientations in eclogites. J Struct Geol 24:1357–1368CrossRefGoogle Scholar
  4. Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979CrossRefGoogle Scholar
  5. Cameron M, Sueno S, Prewitt CT, Papike JJ (1973) High-temperature crystal-chemistry of acmite, diopside, hedenbergite, jadeite, spodumene and ureyite. Am Mineral 58:594–618Google Scholar
  6. Carrez P, Cordier P, Mainprice D, Tommasi A (2006) Slip systems and plastic shear anisotropy in Mg2SiO4 ringwoodite: insights from numerical modelling. Eur J Mineral 18:149–160CrossRefGoogle Scholar
  7. Carrez P, Ferré D, Cordier P (2007) PeierlsNabarro model for dislocations in MgSiO3 post-perovskite calculated at 120 GPa from first principles. Philos Mag 87:3229–3247CrossRefGoogle Scholar
  8. Carrez P, Walker AM, Metsue A, Cordier P (2008) Evidence from numerical modelling for 3D spreading of [001] screw dislocations in Mg2SiO4 forsterite. Philos Mag 88:2477–2485CrossRefGoogle Scholar
  9. Carrez P, Ferré D, Cordier P (2009) PeierlsNabarro modelling of dislocations in MgO from ambient pressure to 100 GPa. Model Simul Mater Sci Eng 17:035010CrossRefGoogle Scholar
  10. Denoual C (2004) Dynamic dislocation modeling by combining Peierls Nabarro and Galerkin methods. Phys Rev B 70:024106Google Scholar
  11. Denoual C (2007) Modeling dislocation by coupling PeierlsNabarro and element-free Galerkin methods. Comput Methods Appl Mech Eng 196:1915–1923CrossRefGoogle Scholar
  12. Dick BG, Overhauser AW (1958) Theory of the dielectric constants of alkali halide crystals. Phys Rev 112:90–103CrossRefGoogle Scholar
  13. Durinck J, Legris A, Cordier P (2005) Influence of crystal chemistry on ideal plastic shear anisotropy in forsterite: first principle calculations. Am Mineral 90:1072–1077CrossRefGoogle Scholar
  14. Durinck J, Carrez P, Cordier P (2007) Application of the PeierlsNabarro model to dislocations in forsterite. Eur J Mineral 19:631–639CrossRefGoogle Scholar
  15. Ferré D, Cordier P, Carrez P (2009) Dislocation modeling in calcium silicate perovskite based on the PeierlsNabarro model. Am Mineral 94:135–142CrossRefGoogle Scholar
  16. Frank FC (1951) Capillary equilibria of dislocated crystals. Acta Cryst 4:497–501CrossRefGoogle Scholar
  17. Gale JD, Rohl AL (2003) The general utility lattice program. Mol Simul 29:291–341CrossRefGoogle Scholar
  18. Gatzemeier A, Wright K (2006) Computer modelling of hydrogen defects in the clinopyroxenes diopside and jadeite. Phys Chem Mineral 33:115–125CrossRefGoogle Scholar
  19. Gumbsch P, Taeri-Baghbadrani S, Brunner D, Sigle W, Rühle M (2001) Plasticity and an inverse brittle-to-ductile transition in strontium titanate. Phys Rev Lett 87:085505(4)Google Scholar
  20. Ingrin J, Doukhan N, Doukhan JC (1991) High-temperature deformation of diopside single crystal. 2. Transmission electron microscopy investigation of the defect microstructures. J Geophys Res Solid Earth Planets 96:14287–14297CrossRefGoogle Scholar
  21. Ingrin J, Doukhan N, Doukhan JC (1992) Dislocation glide systems in diopside single crystals deformed at 800–900 degrees C. Eur J Mineral 4:1291–1302Google Scholar
  22. Kresse G, Furthmüller J (1996a) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169CrossRefGoogle Scholar
  23. Kresse G, Furthmüller J (1996b) Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mat Sci 6:15–50CrossRefGoogle Scholar
  24. Kresse G, Hafner J (1993) Ab initio molecular dynamics for liquid metals. Phys Rev B 47:558CrossRefGoogle Scholar
  25. Kresse G, Hafner J (1994) Ab initio molecular dynamics simulation of the liquid-metal amorphous-semiconductor transition in germanium. Phys Rev B 49:14251CrossRefGoogle Scholar
  26. Levien L, Weidner DJ, Prewitt CT (1979) Elasticity of diopside. Phys Chem Mineral 4:105–113CrossRefGoogle Scholar
  27. Lewis GV, Catlow CRA (1985) Potential models for ionic oxides. J Phys C 18:1149–1161CrossRefGoogle Scholar
  28. Metsue A, Carrez P, Denoual C, Mainprice D, Cordier P (2010) Plastic deformation of wadsleyite: IV. Dislocation core modeling based on the Peierls–Nabarro–Galerkin model. Acta Mater 58:1467–1478. doi:10.1016/j.actamat.2009.10.047 Google Scholar
  29. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 23:5048–5192Google Scholar
  30. Perdew JP, Wang Y (1992) Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B 45:13244–13249CrossRefGoogle Scholar
  31. Pizzagalli L, Godet J, Brochard S (2009) Glissile dislocations with transient cores in silicon. Phys Rev Lett 103:4CrossRefGoogle Scholar
  32. Raterron P, Jaoul O (1991) High-temperature deformation of diopside single crystal. 1. Mechanical data. J Geophys Res Solid Earth Planets 96:14277–14286CrossRefGoogle Scholar
  33. Raterron P, Doukhan N, Jaoul O, Doukhan JC (1994) High temperature deformation of diopside. 4. Predominance of (110) glide above 1000-degrees-C. Phys Earth Planet Inter 82:209–222CrossRefGoogle Scholar
  34. Sanders MJ, Leslie M, Catlow CRA (1984) Interatomic potentials for SiO2. J Chem Soc Chem Commun, pp 1271–1273Google Scholar
  35. Tribaudino M, Prencipe M, Bruno M, Levy D (2000) High-pressure behaviour of Ca-rich C2/c clinopyroxenes along the join diopside–enstatite (CaMgSi2O6–Mg2Si2O6). Phys Chem Miner 27:656–664Google Scholar
  36. Walker AM, Tyer RP, Bruin RP, Dove MT (2008) The compressibility and high pressure structure of diopside from first principles simulation. Phys Chem Miner 35:359–366CrossRefGoogle Scholar
  37. Zhang L, Ahsbahs H, Hafner SS, Kutoglu A (1997) Single-crystal compression and crystal structure of clinopyroxene up to 10 GPa. Am Mineral 82:245–258Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Arnaud Metsue
    • 1
    • 2
  • Philippe Carrez
    • 1
  • Christophe Denoual
    • 3
  • David Mainprice
    • 4
  • Patrick Cordier
    • 1
  1. 1.Unité Matériaux et Transformations, UMR 8207, CNRSUniversité Lille 1, Sciences et TechnologiesVilleneuve d’Ascq CedexFrance
  2. 2.Geodynamics Research Center, Ehime UniversityMatsuyamaJapan
  3. 3.CEA, DAM, DIFArpajonFrance
  4. 4.Géosciences Montpellier, UMR 5243, CNRSUniversité Montpellier 2Montpellier Cedex 05France

Personalised recommendations