Physics and Chemistry of Minerals

, Volume 37, Issue 9, pp 635–651 | Cite as

Heat capacity, entropy, and magnetic properties of jarosite-group compounds

  • Juraj Majzlan
  • Peter Glasnák
  • Robert A. Fisher
  • Mary Anne White
  • Michel B. Johnson
  • Brian Woodfield
  • Juliana Boerio-Goates
Original Paper

Abstract

Jarosite phases are common minerals in acidic, sulfate-rich environments. Here, we report heat capacities (Cp) and standard entropies (S°) for a number of jarosite samples. Most samples are close to the nominal composition AFe3(SO4)2(OH)6, where A = K, Na, Rb, and NH4. One of the samples has a significant number of defects on the Fe sites and is called the defect jarosite; others are referred to as A-jarosite. The samples, their compositions, and the entropies at T = 298.15 K are:

Sample

Chemical composition

So/(J mol−1 K−1)

K-jarosite

K0.92(H3O)0.08Fe2.97(SO4)2(OH)5.90(H2O)0.10

427.4 ± 0.7

Na-jarosite

Na0.95(H3O)0.05Fe3.00(SO4)2(OH)6.00

436.4 ± 4.4

Rb-jarosite

RbFe2.98(SO4)2(OH)5.95(H2O)0.05

411.9 ± 4.1

NH4-jarosite

(NH4)0.87(H3O)0.13Fe3.00(SO4)2(OH)6.00

447.2 ± 4.5

Defect jarosite

K0.94(H3O)0.06Fe2.34(SO4)2(OH)4.01(H2O)1.99

412.7 ± 4.1

There are additional configurational entropies of 13.14 and 8.23 J mol−1 K−1 in defect and NH4-jarosite, respectively. A detailed analysis of the synchrotron X-ray diffraction patterns showed a large anisotropic peak broadening for defect and NH4-jarosite. The fits to the low-temperature (approx. <12 K) Cp data showed that our samples can be divided into two groups. The first group is populated by the K-, Na-, Rb-, and NH4-jarosite samples, antiferromagnetic at low temperatures. The second group contains the H3O-jarosite (studied previously) and the defect jarosite. H3O- and defect jarosite are spin glasses and their low-TCp was fit with the expression Cp = γT + ΣBjTj, where j = (3, 5, 7, 9). The linear term is typical for spin glasses and the sum represents the lattice contribution to Cp. Surprisingly, the Cp of the K-, Na-, Rb-, and NH4-jarosite samples, which are usually considered to be antiferromagnetic at low temperatures, also contains a large linear term. This finding suggests that even these phases do not order completely, but have a partial spin-glass character below their Néel transition temperature.

Keywords

Jarosite Heat capacity Entropy Spin glass Antiferromagnet 

Notes

Acknowledgments

We thank two anonymous reviewers for helpful comments and M. Rieder for the editorial handling of the manuscript. We acknowledge the Angströmquelle Karlsruhe (ANKA) (Forschungszentrum Karlsruhe, Germany) for the provision of the beamtime and S. Doyle for the help with the data collection. This study was financially supported by the Deutsche Forschungsgemeinschaft grant no. MA3927/3-1. Financial contributions from NSERC (Grants to MAW) and the Canada Foundation for Innovation, Atlantic Innovation Fund, and other partners which fund the Facilities for Materials Characterization managed by the Institute for Research in Materials at Dalhousie University, are gratefully acknowledged.

References

  1. Archer DG (1993) Thermodynamic properties of synthetic sapphire (α-Al2O3), standard reference material 720 and the effect of temperature-scale differences on thermodynamic properties. J Phys Chem Ref Data 22:1441–1453CrossRefGoogle Scholar
  2. Baron D, Palmer CD (1996) Solubility of jarosite at 4–35°C. Geochim Cosmochim Acta 60:185–195CrossRefGoogle Scholar
  3. Basciano LC, Peterson RC (2007a) The crystal structure of ammoniojarosite (NH4)Fe3(SO4)2(OH)6 and the crystal chemistry of the ammoniojarosite-hydronium jarosite solid-solution series. Mineral Mag 71:427–441CrossRefGoogle Scholar
  4. Basciano LC, Peterson RC (2007b) Jarosite-hydronium jarosite solid-solution series with full iron site occupancy: mineralogy and crystal chemistry. Am Mineral 92:1464–1473CrossRefGoogle Scholar
  5. Basciano LC, Peterson RC (2008) Crystal chemistry of the natrojarosite-jarosite and natrojarosite-hydronium jarosite solid solution series: a synthetic study with full Fe site occupancy. Am Mineral 93:853–862CrossRefGoogle Scholar
  6. Bishop JL, Murad E (2005) The visible and infrared spectral properties of jarosite and alunite. Am Mineral 90:1100–1107CrossRefGoogle Scholar
  7. Bloss FD (1994) Crystallography and crystal chemistry. Mineralogical Society of America, pp 545Google Scholar
  8. Boer GJ, Sokolika IN, Martin ST (2008) Infrared optical constants of aqueous sulfate–nitrate–ammonium multi-component tropospheric aerosols from attenuated total reflectance measurements—Part I: results and analysis of spectral absorbing features. J Quant Spectrosc Radiat Transf 108:17–38CrossRefGoogle Scholar
  9. Breitinger DK, Krieglstein R, Bogner A, Schwab RG, ThH Pimpl, Mohr J, Schukow H (1997) Vibrational spectra of synthetic minerals of the alunite and crandallite type. J Mol Struct 408(409):287–290CrossRefGoogle Scholar
  10. Bridges CA, Hansen R, Wills AS, Luka GM, Greedan JE (2006) Frustrated magnetism and the effects of titanium substitution in the mixed-valence oxide BaV10-xTixO15. Phys Rev B 74:024426CrossRefGoogle Scholar
  11. Debye P (1912) Zur Theorie der spezifischen Wärmen. Ann Phys 39:789–839CrossRefGoogle Scholar
  12. Dutrizac JE, Jambor JL (2000) Jarosites and their application in hydrometallurgy. Rev Mineral Geochem 40:405–453Google Scholar
  13. Gopal ESR (1966) Specific heat at low temperatures. Plenum Press, New York, pp 240Google Scholar
  14. Göttlicher J, Gasharova B, Bernotat-Wulff H (2000) Pseudotrigonal jarosites (K, H3O)Fe3(SO4)2(OH)6. Abstr Programs Geol Sci Am 32:A180Google Scholar
  15. Grey IE, Mumme WG, Bordet P, Mills SJ (2009) The crystal chemical role of Zn in alunite-type minerals: structure refinements for kintoreite and zincian kintoreite. Am Mineral 94:676–683CrossRefGoogle Scholar
  16. Grohol D, Nocera DG (2007) Magnetic disorder in the frustrated antiferromagnet jarosite arising from the H3O + ···OH–interaction. Chem Mater 19:3061–3066CrossRefGoogle Scholar
  17. Grohol D, Nocera DG, Papoutsakis D (2003) Magnetism of pure iron jarosites. Phys Rev B 67:064401CrossRefGoogle Scholar
  18. Grohol D, Matan K, Cho J-H, Lee S-H, Lynn JW, Nocera DG, Lee YS (2005) Spin chirality on a two-dimensional frustrated lattice. Nat Mater 4:323–328CrossRefGoogle Scholar
  19. Harrison A, Wills AS, Ritter C (1997) Long-range order induced by diamagnetic dilution of jarosites, model Kagome antiferromagnets. Phys B 241:722–723CrossRefGoogle Scholar
  20. Hendricks SB (1937) The crystal structure of alunite and the jarosites. Am Mineral 22:773–784Google Scholar
  21. Inami T, Nishiyama M, Maegawa S, Oka Y (2000) Magnetic structure of the kagome antiferromagnet potassium jarosite KFe3(OH)6(SO4)2. Phys Rev B 61:12181–12186CrossRefGoogle Scholar
  22. Kashkay CHM, Borovskaya YUB, Babazade MA (1975) Determination of ΔGf298o of synthetic jarosite and its sulfate analogues. Geochem Int 12:115–121Google Scholar
  23. Kennedy CA, Stancescu M, Marriott RA, White MA (2007) Recommendations for accurate heat capacity measurements using a quantum design physical property measurement system. Cryogenics 47:107–112CrossRefGoogle Scholar
  24. Larson AC, von Dreele RB (1994) GSAS: general structure analysis system. LANSCE, MS-H805, Los AlamosGoogle Scholar
  25. Lashley JC, Lang BE, Boerio-Goates J, Woodfield BF, Darling TW, Chu F, Migliori A, Thoma D (2002) The heat capacity of single crystal AuZn near the martensitic transition. J Chem Thermodyn 34:251–261CrossRefGoogle Scholar
  26. Majzlan J, Navrotsky A, Woodfield BF, Lang BE, Boerio-Goates J, Fisher RA (2003) Phonon, spin-wave, and defect contribution to the low-temperature specific heat of α-FeOOH. J Low Temp Phys 130:69–76CrossRefGoogle Scholar
  27. Majzlan J, Stevens R, Boerio-Goates J, Woodfield BF, Navrotsky A, Crawford M, Burns P, Amos TG (2004) Thermodynamic properties, low-temperature heat capacity anomalies, and single crystal X-ray refinement of hydronium jarosite (H3O)Fe3(SO4)2(OH)6. Phys Chem Miner 31:518–531CrossRefGoogle Scholar
  28. Majzlan J, Speziale S, Duffy T, Burns PC (2006) Single-crystal elastic properties of alunite, KAl3[(OH)6(SO4)2]. Phys Chem Miner 33:567–573CrossRefGoogle Scholar
  29. Matan K, Grohol D, Nocera DG, Yildirim T, Harris AB, Lee SH, Nagler SE, Lee YS (2006) Spin waves in the frustrated kagomé lattice antiferromagnet KFe3(OH)6(SO4)2. Phys Rev Lett 96:247201CrossRefGoogle Scholar
  30. Nielsen U, Majzlan J, Phillips B, Ziliox M, Grey CP (2007) Characterization of defects and the local environment in natural and synthetic alunite (K, Na, H3O)Al3(SO4)2(OH)6 by multi-nuclear solid-state NMR spectroscopy. Am Mineral 92:587–597CrossRefGoogle Scholar
  31. Nielsen UG, Majzlan J, Grey CP (2008) Identification of local environments in defect jarosite (AFe3(SO4)2(OD)6, A = D3O, Na, K) samples by 2H MAS NMR spectroscopy. Chem Mater 20:2234–2241CrossRefGoogle Scholar
  32. Pitzer KS, Coulter LV (1938) The heat capacities, entropies, and heats of solution of anhydrous sodium sulfate and of sodium sulfate decahydrate. The application of the third law of thermodynamics to hydrated crystals. J Am Chem Soc 60:1310–1313CrossRefGoogle Scholar
  33. Powers DA, Rossman GR, Schugar HJ, Gray HB (1975) Magnetic-behavior and infrared-spectra of jarosite, basic iron sulfate, and their chromate analogs. J Solid State Chem 13:1–13CrossRefGoogle Scholar
  34. Rajdev D, Whitmore DH (1962) Debye temperature for cadmium derived for low-temperature specific-heat measurements. Phys Rev 128:1030–1032CrossRefGoogle Scholar
  35. Sato E, Nakai I, Miyawaki R, Matsubara S (2009) Crystal structures of alunite family minerals: beaverite, corkite, alunite, natroalunite, jarosite, svanbergite, and woodhouseite. Neues Jb Miner Abh 185:313–322CrossRefGoogle Scholar
  36. Serna CJ, Cortina CP, Ramos JVG (1986) Infrared and Raman study of alunite-jarosite compounds. Spectrochim Acta 42A:729–734Google Scholar
  37. Stevens R, Boerio-Goates J (2004) Heat capacity of copper on the ITS-90 temperature scale using adiabatic calorimetry. J Chem Thermodyn 36:857–863CrossRefGoogle Scholar
  38. Stoffregen RE (1993) Stability relations of jarosite and natrojarosite at 150–250°C. Geochim Cosmochim Acta 57:2417–2429CrossRefGoogle Scholar
  39. Townsend MG, Longworth G, Roudaut E (1986) Triangular-spin, kagome plane in jarosites. Phys Rev B 33:4919–4926CrossRefGoogle Scholar
  40. Ulbrich HH, Waldbaum DR (1976) Structural and other contributions to the third-law entropies of silicates. Geochim Cosmochim Acta 40:1–24CrossRefGoogle Scholar
  41. Wills AS, Harrison A, Ritter C, Smith RI (2000) Magnetic properties of pure and diamagnetically doped jarosites: model kagomé antiferromagnets with variable coverage of the magnetic lattice. Phys Rev B 61:6156–6169CrossRefGoogle Scholar
  42. Wills AS, Oakley GS, Visser D, Frunzke J, Harrison A, Andersen KH (2001) Short-range order in the topological spin glass (D3O)Fe3(SO4)2(OD)6 using xyz polarized neutron diffraction. Phys Rev B 64:094436CrossRefGoogle Scholar
  43. Xu H, Zhao Y, Vogel SC, Hickmott DD, Daemen LL, Hartl MA (2009) Thermal expansion and decomposition of jarosite: a high-temperature neutron diffraction study. Phys Chem Miner. doi:10.1007/s00269-009-0311-5
  44. Zotov AV, Mironova GD, Rusinov VL (1973) Determination of ΔGf 298° of jarosite synthesized from a natural solution. Geokhimia 5:739–745 (in Russian)Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Juraj Majzlan
    • 1
  • Peter Glasnák
    • 2
  • Robert A. Fisher
    • 4
  • Mary Anne White
    • 5
  • Michel B. Johnson
    • 5
  • Brian Woodfield
    • 3
  • Juliana Boerio-Goates
    • 3
  1. 1.Institute of GeosciencesFriedrich-Schiller UniversityJenaGermany
  2. 2.Institute of GeosciencesAlbert-Ludwig UniversityFreiburgGermany
  3. 3.Department of Chemistry and BiochemistryBrigham Young UniversityProvoUSA
  4. 4.Lawrence Berkeley National LaboratoryUniversity of California at BerkeleyBerkeleyUSA
  5. 5.Department of Chemistry and Institute for Research in MaterialsDalhousie UniversityHalifaxCanada

Personalised recommendations