Advertisement

Physics and Chemistry of Minerals

, Volume 37, Issue 8, pp 529–533 | Cite as

Analytical expressions to determine the isothermal compressibility tensor and the isobaric thermal expansion tensor for monoclinic crystals: application to determine the direction of maximum compressibility in jadeite

  • Kevin S. Knight
Original Paper

Abstract

Expressions are presented to allow the simple determination of the magnitudes and directions of the principal axes for the isothermal compressibility tensor and the isobaric thermal expansion tensor for monoclinic crystals. The method is applied to re-evaluate the apparently contradictory results that have recently been obtained for the direction of maximum compressibility in jadeite. The term ‘unit strain’ to describe these second rank tensors is discouraged and the use of the representation quadric for visualisation of second rank tensors is recommended.

Keywords

Compressibility Thermal expansion Second rank tensors Jadeite 

Notes

Acknowledgements

I am grateful to Dr A. D. Fortes (University College, London) for commenting on an early draft of this manuscript, and to Prof. R. J. Angel (Virginia Polytechnic Institute) for his robust views on the desirability of the term ‘unit strain’ for describing pressure-dependent and temperature-dependent changes in the unit cell metric. Prof. I Jackson (Australian National University) is thanked for providing the expressions for infinitesimal calculations and for his reviewer’s comments which have improved the manuscript.

References

  1. Brand HEA, Fortes AD, Wood IG, Knight KS, Vočadlo L (2009) The thermal expansion and crystal structure of mirabilite (Na2SO4·10D2O) from 4.2 to 300 K, determined by time-of-flight neutron powder diffraction. Phys Chem Miner 36:29–46CrossRefGoogle Scholar
  2. Haussühl S (2007) Physical properties of crystals. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  3. Knight KS, Price GD (2008) Powder neutron diffraction studies of clinopyroxenes: I the crystal structure and thermoelastic properties of jadeite between 1.5 K and 270 K. Can Mineral 46:1593–1622CrossRefGoogle Scholar
  4. Knight KS, Stretton IC, Schofield PF (1999) Temperature evolution between 50 K and 320 K of the thermal expansion tensor of gypsum derived from neutron powder diffraction data. Phys Chem Miner 26:477–483CrossRefGoogle Scholar
  5. McCarthy AC, Downs RT, Thompson RM (2008) Compressibility trends of the clinopyroxenes, and an in situ high-pressure single-crystal X-ray diffraction study of jadeite. Am Mineral 93:198–209CrossRefGoogle Scholar
  6. Nestola F, Boffa Ballaran T, Liebske C, Bruno M, Tribaudino M (2006) High pressure behaviour along the jadeite NaAlSi2O6-aegirine NaFeSi2O6 solid solution up to 10 GPa. Phys Chem Miner 33:417–425CrossRefGoogle Scholar
  7. Nestola F, Boffa Ballaran T, Liebske C, Thompson R, Downs RT (2008) The effect of hedenbergite substitution on the compressibility of jadeite. Am Mineral 93:1005–1013CrossRefGoogle Scholar
  8. Neumann FE (1885) Vorlesungen über die Theorie der Elastizität der fester Körper und die Lichtäthers (ed: Meyer OE). Teubner, LeipzigGoogle Scholar
  9. Nye JF (1985) Physical properties of crystals. Oxford University Press, OxfordGoogle Scholar
  10. Ohashi Y (1982) A program to calculate the strain tensor from two sets of unit-cell parameters (STRAIN). In: Hazen RM, Finger LW (eds) Comparative crystal chemistry. Wiley, New York, pp 92–102Google Scholar
  11. Origlieri MJ, Downs RT, Thompson RM, Pommier CJS, Denton MB, Harlow GE (2003) High-pressure crystal structure of kosmochlor, NaCrSi2O6, and systematics of anisotropic compression in pyroxenes. Am Mineral 88:1025–1032Google Scholar
  12. Pavese A, Diella V, Levy D, Hanfland M (2001) Synchrotron X-ray powder diffraction study of natural P2/n-omphacites at high pressure. Phys Chem Miner 28:9–16CrossRefGoogle Scholar
  13. Pippard AB (1961) Elements of classical thermodynamics. Cambridge University Press, CambridgeGoogle Scholar
  14. Schlenker JL, Gibbs GV, Boisen MB Jr (1978) Strain-tensor components expressed in terms of lattice parameters. Acta Crystallogr A A34:52–54CrossRefGoogle Scholar
  15. Schofield PF, Knight KS, Stretton I (1996) Thermal expansion of gypsum investigated by neutron powder diffraction. Am Mineral 81:847–851Google Scholar
  16. Schofield PF, Knight KS, van der Houwen JAM, Valsami-Jones E (2004) The role of hydrogen bonding in the thermal expansion and dehydration of brushite, di-calcium phosphate dihydrate. Phys Chem Miner 31:606–624CrossRefGoogle Scholar
  17. Thompson RM, Downs RT (2008) The crystal structure of diopside at pressures to 10 GPa. Am Mineral 93:177–186CrossRefGoogle Scholar
  18. Tribaudino M, Nestola F, Bruno M, Boffa Ballaran T, Liebske C (2008) Thermal expansion along the NaAlSi2O6-NaFe3+Si2O6 and NaAlSi2O6-CaFe2+Si2O6 solid solutions. Phys Chem Miner 35:241–248CrossRefGoogle Scholar
  19. Wallace DC (1972) Thermodynamics of crystals. Wiley, New YorkGoogle Scholar
  20. Zemansky MW, Dittman RH (1981) Heat and thermodynamics. McGraw-Hill, New YorkGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.ISIS Facility, Rutherford Appleton LaboratoryChilton, DidcotUK
  2. 2.Department of MineralogyThe Natural History MuseumLondonUK

Personalised recommendations