Physics and Chemistry of Minerals

, Volume 37, Issue 7, pp 465–474 | Cite as

Isothermal compression behavior of (Mg,Fe)O using neon as a pressure medium

  • Kirill K. Zhuravlev
  • J. M. Jackson
  • A. S. Wolf
  • J. K. Wicks
  • J. Yan
  • S. M. Clark
Original Paper


We present isothermal volume compression behavior of two polycrystalline (Mg,Fe)O samples with FeO = 39 and 78 mol% up to ~90 GPa at 300 K using synchrotron X-ray diffraction and neon as a pressure-transmitting medium. For the iron-rich (Mg0.22Fe0.78)O sample, a structural transition from the B1 structure to a rhombohedral structure was observed at 41.6 GPa, with no further indication of changes in structural or compression behavior changes up to 93 GPa. In contrast, a change in the compression behavior of (Mg0.61Fe0.39)O was observed during compression at P ≥ 71 GPa and is indicative of a spin crossover occurring in the Fe2+ component of (Mg0.61Fe0.39)O. The low-spin state exhibited a volume collapse of ~3.5%, which is a larger value than what was observed for a similar composition in a laser-heated NaCl medium. Upon decompression, the volume of the high-spin state was recovered at approximately 65 GPa. We therefore bracket the spin crossover at 65 ≤ P (GPa) ≤ 77 at 300 K (Mg0.61Fe0.39)O. We observed no deviation from the B1 structure in (Mg0.61Fe0.39)O throughout the pressure range investigated.


(Mg,Fe)O Lower mantle Spin crossover Phase transition 



We thank E. Hamecher (Caltech) for help with conducting experiments, S. Mackwell (Lunar & Planetary Institute, TX) for synthesizing and providing the (Mg0.22Fe0.78)O sample. The powdered (Mg0.61Fe0.39)O sample was synthesized with the help of Y. Fei (Carnegie Institution of Washington). I. Kantor and an anonymous reviewer provided helpful suggestions that improved the manuscript. This work was supported by the National Science Foundation EAR Geophysics 0711542 (JMJ). The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Portions of this work were supported by COMPRES under NSF Cooperative Agreement EAR 06-49658.


  1. Angel RJ (2000) Equations of state. In: Hazen RM, Downs RT (eds) High-pressure and high-temperature crystal chemistry. (Reviews in Mineralogy and Geochemistry) Mineralogical Soc America, Washington, DC, pp 35–60Google Scholar
  2. Auzende AL, Badro J, Ryerson FJ, Weber PK, Fallon SJ, Addad A, Siebert J, Fiquet G (2008) Element partitioning between magnesium silicate perovskite and ferropericlase: new insights into bulk lower-mantle geochemistry. Earth Planet Sci Lett 269:164–174CrossRefGoogle Scholar
  3. Badro J, Fiquet G, Guyot F, Rueff JP, Struzhkin VV, Vanko G, Monaco G (2003) Iron partitioning in Earth’s lower mantle: toward a deep lower mantle discontinuity. Science 300:789–791CrossRefGoogle Scholar
  4. Bower D, Gurnis M, Jackson JM, Sturhahn W (2009) Enhanced convection and fast plumes in the lower mantle induced by the spin transition in ferropericlase. Geophys Res Lett. doi:10.1029/2009GL037706
  5. Crowhurst JC, Brown JM, Goncharov AF, Jacobsen SD (2008) Elasticity of (Mg, Fe)O through the spin transition of iron in the lower mantle. Science 319(5862):451–453CrossRefGoogle Scholar
  6. Duffy TS, Hemley RJ, Mao HK (1995) Equation of state at multimegabar pressures: magnesium oxide to 227 GPa. Phys Rev Lett 74:1371–1374CrossRefGoogle Scholar
  7. Fei Y, Zhang L, Corgne A, Watson HC, Ricolleau A, Meng Y, Prakapenka V (2007) Spin transition and equations of state of (Mg, Fe)O solid solutions. Geophys Res Lett 34:L17307CrossRefGoogle Scholar
  8. Hammersley AP, Svenson SO, Hanfland M (1996) Two-dimensional detector software: from real detector to idealised image or two-theta scan. High Pressure Res 14:235–248CrossRefGoogle Scholar
  9. Irifune T (1994) Absence of an aluminous phase in the upper part of the Earth’s lower mantle. Nature 370:131–133CrossRefGoogle Scholar
  10. Jacobsen SD, Reichmann HJ, Spetzler HA, Mackwell SJ, Smyth JR, Angel RJ, McCammon CA (2002) Structure and elasticity of single-crystal (Mg, Fe)O and a new method of generating shear waves for gigahertz ultrasonic interferometry. J Geophys Res Solid Earth 107:B2CrossRefGoogle Scholar
  11. Jacobsen SD, Spetzler H, Reichmann HJ, Smyth JR (2004) Shear waves in the diamond-anvil cell reveal pressure-induced instability in (Mg, Fe)O. Proc Natl Acad Sci USA 101(16):5867–5871CrossRefGoogle Scholar
  12. Jacobsen SD, Lin JF, Angel RJ, Shen G, Prakapenka V, Dera P, Mao HK, Hemley RJ (2005) Single-crystal synchrotron X-ray diffraction study of wüstite and magnesiowüstite at lower-mantle pressures. J Synchrotron Radiat 12:577–583CrossRefGoogle Scholar
  13. Jacobsen SD, Holl CM, Adams KA, Fischer RA, Martin ES, Bina CR, Lin JF, Prakapenka VB, Kubo A, Dera P (2008) Compression of single-crystal magnesium oxide to 118 GPa and a ruby pressure gauge for helium pressure media. Am Miner 93:1823–1828CrossRefGoogle Scholar
  14. Jeanloz R, Ahrens TJ (1980) Equations of state of FeO and CaO. J R Astron Soc 62:505–528Google Scholar
  15. Kantor AP, Jacobsen SD, Kantor IY, Dubrovinsky L, McCammon CA, Reichmann HJ, Goncharenko IN (2004) Pressure-induced magnetization in FeO: evidence from elasticity and Mössbauer spectroscopy. Phys Rev Lett 93:93215502CrossRefGoogle Scholar
  16. Kantor I, Dubrovinsky L, McCammon C, Steinle-Neumann G, Kantor A, Skorodumova N, Pascarelli S, Aquilanti G (2009) Short-range order and Fe clustering in Mg1-xFexO under high pressure. Phys Rev B 80:014204Google Scholar
  17. Knittle E, Jeanloz R (1986) High-pressure metallization of FeO and implications for the Earth’s core. Geophys Res Lett 96:16169–16180Google Scholar
  18. Kondo T, Ohtani E, Hirao N, Yagi T, Kikegawa T (2004) Phase transitions of (Mg, Fe)O at megabar pressures. Phys Earth Planet Interiors 143–144:201–213CrossRefGoogle Scholar
  19. Larsen AC, Von Dreele R (2000) General structure analysis system (GSAS), Los Alamos National Laboratory, Los AlamosGoogle Scholar
  20. Lin JF, Heinz DL, Mao HK, Hemley RJ, Devine JM, Li J, Shen GY (2003) Stability of magnesiowustite in Earth’s lower mantle. Proc Natl Acad Sci USA 100(8):4405–4408CrossRefGoogle Scholar
  21. Lin JF, Struzhkin VV, Jacobsen SD, Hu M, Chow P, Kung J, Liu H, Mao HK, Hemley RJ (2005) Spin transition of iron in magnesiowüstite in the Earth’s lower mantle. Nature 436:377–380CrossRefGoogle Scholar
  22. Lin JF, Jacobsen SD, Sturhahn W, Jackson JM, Zhao J, Yoo CS (2006) Sound velocities of ferropericlase in the Earth’s lower mantle. Geophys Res Lett 33. doi:10.1029/2006GL028099
  23. Mackwell SJ, Bystricky M, Sproni C (2005) Fe–Mg interdiffusion in (Mg, Fe)O. Phys Chem Miner 32:418–425CrossRefGoogle Scholar
  24. Mao HK, Xu J, Bell PM (1986) Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. J Geophys Res B91:4673–4676CrossRefGoogle Scholar
  25. Mao HK, Shu J, Fei Y, Hu J, Hemley RJ (1996) The wustite enigma. Phys Earth Planet Interiors 96:135–145CrossRefGoogle Scholar
  26. Mao WL, Shu J, Hu J, Hemley RJ, Mao HK (2002) Displacive transition in magnesiowustite. J Phys Condens Matter 14:11349–11354CrossRefGoogle Scholar
  27. Marquardt H, Speziale S, Reichmann HJ, Frost DJ, Schilling FR, Garnero EJ (2009) Elastic shear anisotropy of ferropericlase in Earth’s lower mantle. Science 324(5924):224–225. doi:10.1126/science.1169365 CrossRefGoogle Scholar
  28. McDonough WF, Sun SS (1995) The composition of the Earth. Chem Geol 120:223–253CrossRefGoogle Scholar
  29. Murakami M, Hirose K, Sata N, Ohishi Y (2005) Post-perovskite phase transition and mineral chemistry in the pyrolitic lowermost mantle. Geophys Res Lett 32. doi:10/1029/2004GL021956
  30. Persson K, Bengtson A, Ceder G, Morgan D (2006) Ab initio study of the composition dependence of the pressure-induced spin transition in the (Mg1−xFex)O system. Geophys Res Lett 33(16):L16306CrossRefGoogle Scholar
  31. Richet P, Mao HK, Bell PM (1989) Bulk moduli of magnesiowustite from static compression experiments. J Geophys Res 94:3037–3045CrossRefGoogle Scholar
  32. Rivers M, Prakapenka VB, Kubo A, Pullins C, Holl CM, Jacobsen SD (2008) The COMPRES/GSECARS gas-loading system for diamond anvil cells at the Advanced Photon Source. High Press Res 28(3):273–292CrossRefGoogle Scholar
  33. Shu J, Mao HK, Hu J, Fei Y, Hemley RJ (1998) Single-crystal X-ray diffraction of wustite to 30 GPa under hydrostatic pressure. Neues Jahrb Miner Abh 172(2–3):309–323Google Scholar
  34. Sinmyo R, Hirose K, Nishio-Hamane D, Seto Y, Fujino K, Sata N, Ohishi Y (2008) Partitioning of iron between perovskite/postperovskite and ferropericlase in the lower mantle. J Geophys Res 113:B11204. doi:10.1029/2008JB005730 CrossRefGoogle Scholar
  35. Speziale S, Milner A, Lee VE, Clark SM, Pasternak MP, Jeanloz R (2005) Iron spin transition in Earth’s mantle. Proc Natl Acad Sci USA 102(50):17918–17922CrossRefGoogle Scholar
  36. Speziale S, Lee VE, Clark SM et al (2007) Effects of Fe spin transition on the elasticity of (Mg, Fe) O magnesiowustites and implications for the seismological properties of the Earth’s lower mantle J Geophys Res 112(B10):B10212Google Scholar
  37. Struzhkin VV, Mao HK, Hu JZ, Schwoerer-Bohning M, Shu JF, Hemley RJ, Sturhahn W, Hu MY, Alp EE, Eng P, Shen GY (2001) Nuclear inelastic X-ray scattering of FeO to 48 GPa. Phys Rev Lett 87:25. doi:10.1103/PhysRevLett.87.255501 Google Scholar
  38. Sturhahn W, Jackson JM, Lin JF (2005) The spin state of iron in minerals of Earth’s lower mantle. Geophys Res Lett 32:L12307. doi:10.1029/2005GL022802
  39. Toby BH (2001) EXPGUI, a graphical user interface for GSAS. J Appl Crystallogr 34:210–213CrossRefGoogle Scholar
  40. Tsuchiya T, Wentzcovitch RM, CRSd Silver, Gironcoli SD (2006) Spin transition is magnesiowüstite in Earth’s lower mantle. Phys Rev Lett 96:198501CrossRefGoogle Scholar
  41. Zha CS, Mao HK, Hemley RJ (2000) Elasticity of MgO and a primary pressure scale to 55 GPa. Proc Natl Acad Sci USA 97(25):13494–13499CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Kirill K. Zhuravlev
    • 1
    • 3
  • J. M. Jackson
    • 1
  • A. S. Wolf
    • 1
  • J. K. Wicks
    • 1
  • J. Yan
    • 2
  • S. M. Clark
    • 2
  1. 1.Seismological Laboratory, Division of Geological and Planetary SciencesCalifornia Institute of TechnologyPasadenaCAUSA
  2. 2.Advanced Light Source, Lawrence Berkeley National LaboratoryBerkeleyUSA
  3. 3.Department of ChemistryUniversity of Western OntarioLondonCanada

Personalised recommendations