Physics and Chemistry of Minerals

, Volume 37, Issue 7, pp 417–424 | Cite as

Heavy-ion irradiation on crystallographically oriented cordierite and the conversion of molecular CO2 to CO: a Raman spectroscopic study

  • Christian Weikusat
  • Ronald Miletich
  • Ulrich A. Glasmacher
  • Christina Trautmann
  • Reinhard Neumann
Original Paper


Crystallographically oriented sections of natural gemstone quality cordierite single-crystals have been irradiated with swift heavy ions of GeV energy and various fluences. Irradiation effects on the crystal lattice were investigated by means of Raman spectroscopy. Raman line scans along the trajectory of the ions reveal a close correlation of beam parameters (such as fluence and energy loss dE/dx along the ion path) to strain due to associated changes in lattice dimensions and defect concentration. The luminescence background also scales with the ion fluence and suggests the formation of point defects, which could also account for the macroscopically observable colouration of the irradiated samples. In addition, changes in the amount and nature of volatile species inside the structural channels are observed. They also scale with dE/dx and confirm the previously postulated irradiation-induced conversion of CO2 to CO. Irradiations along the crystallographic a-, b- and c-axis reveal no significant anisotropy effect with respect to lattice alterations. The polarisation characteristics of the Raman-active modes confirm the preferred molecular alignment of CO and CO2 along the a-axis direction.


Cordierite Raman spectroscopy Swift heavy ions Radiation damage Carbon dioxide Carbon monoxide 



We thank Dr. Reinhard Kaindl and one anonymous reviewer for constructive comments. We acknowledge Marcus Schrauder, Vienna, for providing us with the crystal specimens from Madagascar (sample CORTS). We thank Ilona Fin and Oliver Wienand for their careful preparation of the crystal sections, and Sandra Panienka for her help with carrying out the electron microprobe analyses. Financial support within the BMBF Verbundprojekt and GSI research grant (Bundesministerium für Bildung und Forschung, grant 05KK7VH1 to UAG) is acknowledged. Fitting was performed with the free software FITYK 0.8.9 (


  1. Aines RD, Rossman GR (1984) The high temperature behavior of water and carbon dioxide in cordierite and beryl. Am Mineral 69:319Google Scholar
  2. Armbruster T (1985) Ar, N2 and CO2 in the structural cavities of cordierite, an optical and X-ray single-crystal study. Phys Chem Miner 12:233–245CrossRefGoogle Scholar
  3. Armbruster T, Bloss FD (1981) Mg-cordierite: Si/AI ordering, optical properties, and distortion. Contrib Mineral Petrol 77:332–336CrossRefGoogle Scholar
  4. Armbruster T, Bloss FD (1982) Orientation and effects of channel H2O and CO2 in cordierite. Am Mineral 67:284–291Google Scholar
  5. Armbruster T, Bürgi HB (1982) Orientation of CO2 in cavity of cordierite: a single-crystal X-ray study at 100 K, 300 K, and 500 K. Fortschr Mineral 60(Beih 1):37–39Google Scholar
  6. Carey JW, Navrotsky A (1992) The molar enthalpy of dehydration of cordierite. Am Mineral 77:930Google Scholar
  7. Carson DG, Rossman GR, Vaughan RW (1982) Orientation and motion of water molecules in cordierite: a proton nuclear magnetic resonance study. Phys Chem Miner 8:14–19CrossRefGoogle Scholar
  8. Faye GH, Manning PG, Nickel EH (1968) The polarized optical absorption spectra of tourmaline, cordierite, chloritoid and vivianite: ferric-ferrous electron interaction as a source of pleochroism. Am Mineral 53:1174–1201Google Scholar
  9. Geiger CA, Rager H, Czank M (2000) Cordierite. III. The site occupation and concentration of Fe3+. Contrib Mineral Petrol 140:344–352CrossRefGoogle Scholar
  10. Gibbs GV (1966) The polymorphism of cordierite I: the crystal structure of low cordierite. Am Mineral 51:1068–1087Google Scholar
  11. Goldmann DS, Rossman GR (1977) Channel constituents in cordierite. Am Mineral 62:1144–1157Google Scholar
  12. Güttler B, Salje EKH, Putnis A (1989) Structural states of Mg cordierite. III. Infrared spectroscopy and the nature of the hexagonal-modulated transition. Phys Chem Miner 16:365–373Google Scholar
  13. Kaindl R, Tropper P, Deibl I (2006) A semi-quantitative technique for determination of CO2 in cordierite by Raman spectroscopy in thin sections. Eur J Miner 18:331CrossRefGoogle Scholar
  14. Khomenko VM, Langer K (2005) Carbon oxides in cordierite channels: determination of CO2 isotopic species and CO by single crystal IR spectroscopy. Am Mineral 90:1913–1917CrossRefGoogle Scholar
  15. Khomenko VM, Langer K, Geiger CA (2001) Structural locations of the iron ions in cordierite: a spectroscopic study. Contrib Mineral Petrol 141:381–396Google Scholar
  16. Kolesov BA, Geiger CA (2000) Cordierite II: the role of CO2 and H2O. Am Mineral 85:1265–1274Google Scholar
  17. Krickl R, Nasdala L, Wildner M, Grambole D (2008) New insights into the formation of radiohaloes: effects of artificial alpha-irradiation on cordierites. In: Proceedings of the 86th annual meeting of the German mineralogical society, Berlin, Germany, Book of Abstracts, no. 210Google Scholar
  18. Krickl R, Nasdala L, Grambole D, Kaindl R (2009) Radio-induced alteration in cordierite—implications for petrology, gemmology and material science. Geophys Res Abstr, vol 11, EGU2009-2657-2, EGU General Assembly 2009 (abstr.)Google Scholar
  19. Lee WE, Mitchell TE, Heuer AH (1986) Electron beam-induced phase decomposition of cordierite and enstatite. Radiat Eff 97:115–126CrossRefGoogle Scholar
  20. Liu J, Glasmacher UA, Lang M, Trautmann C, Voss K-O, Neumann R, Wagner GA, Miletich R (2008) Raman spectroscopy of apatite irradiated with swift heavy ions with and without simultaneous exertion of high pressure. Appl Phys A 91:17–22CrossRefGoogle Scholar
  21. Łodziński M, Wrzalik R, Sitarz M (2005) Micro-Raman spectroscopy studies of some accessory minerals from pegmatites of the Sowie Mts and Strzegom-Sobótka massif, Lower Silesia, Poland. J Mol Struct 744–747:1017–1026Google Scholar
  22. Malcherek T, Domeneghetti MC, Tazzoli V, Ottolini L, McCammon C, Carpenter MA (2001) Structural properties of ferromagnesian cordierites. Am Mineral 86:66–79Google Scholar
  23. McMillan P, Putnis A, Carpenter MA (1984) A Raman spectroscopic study of Al–Si ordering in synthetic magnesium cordierite. Phys Chem Miner 10:256–260CrossRefGoogle Scholar
  24. Mirwald PW (1982) A high-pressure phase transition in cordierite. Am Mineral 67:277–283Google Scholar
  25. Nasdala L, Wildner M, Wirth R, Groschopf N, Pal DC, Möller A (2006) Alpha particle haloes in chlorite and cordierite. Mineral Petrol 86:1CrossRefGoogle Scholar
  26. Poon WCK, Putnis A, Salje E (1990) Structural states of Mg cordierite. IV. Raman spectroscopy and local order parameter behaviour. J Phys: Condens Matter 2:6361–6372CrossRefGoogle Scholar
  27. Putnis A (1980) Order-modulated structures and the thermodynamics of cordierite reactions. Nature 287:128–131CrossRefGoogle Scholar
  28. Santosh M, Jackson DH, Harris NBW (1993) The significance of channel and fluid-inclusion CO2 in cordierite: evidence from carbon isotopes. J Petrol 34:233–258Google Scholar
  29. Shannon RD, Mariano AN, Rossman GR (1992) Effect of water and carbon dioxide on dielectric properties of single-crystal cordierite and comparison with polycrystalline cordierite. J Am Ceram Soc 75:2395–2399CrossRefGoogle Scholar
  30. Toulemonde M, Dufour C, Meftah A, Paumier E (2001) Transient thermal processes in heavy ion irradiation of crystalline inorganic insulators. Nucl Instrum Methods Phys Res, Sect B 166:903–912CrossRefGoogle Scholar
  31. Vance ER, Price DC (1984) Heating and radiation effects on optical and Mössbauer spectra of Fe-bearing cordierites. Phys Chem Miner 10:200–208CrossRefGoogle Scholar
  32. Vry JK, Brown PE, Valley JW (1990) Cordierite volatile content and the role of CO2 in high-grade metamorphism. Am Mineral 75:71–88Google Scholar
  33. Weikusat C, Glasmacher UA, Miletich R, Neumann R, Trautmann C (2008) Raman spectroscopy of heavy ion induced damage in cordierite. Nucl Instrum Methods Phys Res, Sect B 266:2990CrossRefGoogle Scholar
  34. Winkler B, Hennion B (1994) Low temperature dynamics of molecular H2O in bassanite, gypsum and cordierite investigated by high resolution incoherent inelastic neutron scattering. Phys Chem Miner 21:539–545CrossRefGoogle Scholar
  35. Winkler B, Milman V, Payne MC (1994a) Orientation, location, and total energy of hydration of channel H2O in cordierite investigated by ab initio total energy calculations. Am Mineral 79:200–204Google Scholar
  36. Winkler B, Coddens G, Hennion B (1994b) Movement of channel H2O in cordierite observed with quasi-elastic neutron scattering. Am Mineral 79:801–808Google Scholar
  37. Zhang M, Salje EKH, Farnan I, Graeme-Barber A, Daniel P, Ewing RC, Clark AM, Leroux H (2000) Metamictization of zircon: Raman spectroscopic study. J Phys: Condens Matter 12:1915–1925CrossRefGoogle Scholar
  38. Ziegler JF, Biersack JP, Littmark U (1985) The stopping and range of ions in solids. Pergamon, New YorkGoogle Scholar
  39. Zimmermann JL (1981) La libération de l’eau, du gaz carbonique et des hydrocarbures des cordierites. Cinétique des méchanismes, détermination des sites, intérêt pétrogénétique. Bull Minér 104:325–338Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Christian Weikusat
    • 1
  • Ronald Miletich
    • 1
  • Ulrich A. Glasmacher
    • 1
  • Christina Trautmann
    • 2
  • Reinhard Neumann
    • 2
  1. 1.Institute of Earth SciencesUniversity of HeidelbergHeidelbergGermany
  2. 2.GSI HelmholtzzentrumDarmstadtGermany

Personalised recommendations